【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+mx+n﹣1的對稱軸為x=2.
(1)m的值為;
(2)若拋物線與y軸正半軸交于點A,其對稱軸與x軸交于點B,當(dāng)△OAB是等腰直角三角形時,求n的值;
(3)點C的坐標(biāo)為(3,0),若該拋物線與線段OC有且只有一個交點,求n的取值范圍.
【答案】
(1)-4
(2)解:把m=﹣4代入拋物線y=x2+mx+n﹣1得:
y=x2﹣4x+n﹣1,
當(dāng)x=0時,y=n﹣1,
∴A(0,n﹣1),B(2,0),
∵△OAB是等腰直角三角形,
∴OA=OB,
即:n﹣1=2,n=3
(3)解:①如圖1,當(dāng)拋物線頂點在x軸上時,
△=0,(﹣4)2﹣4×1×(n﹣1)=0
n=5,
②如圖2,當(dāng)拋物線過點C(3,0)時,
把(3,0)代入得:32﹣4×3+n﹣1=0,
n=4,
③如圖3,當(dāng)拋物線過原點時,n﹣1=0,n=1,
結(jié)合圖象可得,1≤n<4或n=5.
【解析】解:(1)對稱軸:x=﹣ =2,m=﹣4;
【考點精析】本題主要考查了等腰直角三角形和拋物線與坐標(biāo)軸的交點的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx-5的圖象經(jīng)過點A(2,-1).
(1)求k的值;
(2)畫出這個函數(shù)的圖象;
(3)若將此函數(shù)的圖象向上平移m個單位后與坐標(biāo)軸圍成的三角形的面積為1,請直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=mx2+(3m+1)x+3.
(1)當(dāng)m取何值時,此二次函數(shù)的圖象與x軸有兩個交點;
(2)當(dāng)拋物線y=mx2+(3m+1)x+3與x軸兩個交點的橫坐標(biāo)均為整數(shù),且m為正整數(shù)時,求此拋物線的表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在線段AB上找一點C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BCAB=AC2 , 那么稱線段AB被點C黃金分割.為了增加美感,黃金分割經(jīng)常被應(yīng)用在繪畫、雕塑、音樂、建筑等藝術(shù)領(lǐng)域.如圖2,在我國古代紫禁城的中軸線上,太和門位于太和殿與內(nèi)金水橋之間靠近內(nèi)金水橋的一側(cè),三個建筑的位置關(guān)系滿足黃金分割.已知太和殿到內(nèi)金水橋的距離約為100丈,求太和門到太和殿之間的距離( 的近似值取2.2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有三個分別寫有數(shù)字6,﹣2,7的小球,它們的形狀、大小、質(zhì)地完全相同,先從盒子里隨機抽取一個小球,記下數(shù)字后放回盒子,搖勻后再隨機取出一個小球,記下數(shù)字,請你用畫樹狀圖或列表的方法求兩次取出小球上的數(shù)字和大于10的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說法正確的是( )
A.該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>
B.當(dāng)該村總?cè)丝跒?0人時,人均耕地面積為1公頃
C.若該村人均耕地面積為2公頃,則總?cè)丝谟?00人
D.該村人均耕地面積y與總?cè)丝趚成正比例
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形ABCD與正方形AEFG的邊AB、AE(AB<AE)在一條直線上,正方形AEFG以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α.在旋轉(zhuǎn)過程中,兩個正方形只有點A重合,其它頂點均不重合,連接BE、DG.
(1)當(dāng)正方形AEFG旋轉(zhuǎn)至如圖2所示的位置時,求證:BE=DG;
(2)如圖3,如果α=45°,AB=2,AE=4 ,求點G到BE的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】威麗商場銷售A,B兩種商品,售出1件A種商品和4件B種商品所得利潤為600元,售出3件A種商品和5件B種商品所得利潤為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤分別為多少元;
(2)由于需求量大,A、B兩種商品很快售完,威麗商場決定再一次購進A、B兩種商品共34件.如果將這34件商品全部售完后所得利潤不低于4000元,那么威麗商場至少需購進多少件A種商品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com