【題目】如圖,矩形紙片ABCD中,G、F分別為AD、BC的中點,將紙片折疊,使D點落在GF上,得到△HAE , 再過H點折疊紙片,使B點落在直線AB上,折痕為PQ.連接AF、EF , 已知HE=HF.下列結論:①△MEH為等邊三角形;②AE⊥EF;③△PHE∽△HAE;④ ,
其中正確的結論是
A.①②③
B.①②④
C.①③④
D.①②③④
【答案】D
【解析】解:①由折疊易得AH=AD,∠DAE=HAE,
∠AHE=∠D=90°,PQ=BC=AD,PQ⊥AB,
因為G,F分別為AD、BC的中點,
所以H也是PQ的中點,
則在Rt△AHQ中,AH=2HQ,則∠HAQ=30°,
所以∠DAE=HAE=∠HAQ=30°,
則∠AEH=60°,∠AHM=∠HAQ=30°,
所以∠EMH=∠AEH=60°,
則△MEH為等邊三角形,故①正確;
②由①得MH=EH=HF,則△MEF為直角三角形,即AE⊥EF , 故②正確;
③在Rt△AHE中,=sin30°=,
同理,在Rt△AHQ中,=sin30°=,
則==,
又∠AHE=∠HPE=90°,
∴△PHE∽△HAE , 故③正確;
④設AD=x,則AH=x,BQ=HF=HE=x,AQ=AH=x,
則AB=AQ+BQ=x,
所以==,
故④正確.
故選 D.
【考點精析】本題主要考查了矩形的性質(zhì)的相關知識點,需要掌握矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】定義:底與腰的比是的等腰三角形叫做黃金等腰三角形.
如圖,已知△ABC中,AC=BC,∠C=36°,BA1平分∠ABC交AC于A1 .
(1)證明:AB2=AA1AC;
(2)探究:△ABC是否為黃金等腰三角形?請說明理由;(提示:此處不妨設AC=1)
(3)應用:已知AC=a,作A1B1∥AB交BC于B1 , B1A2平分∠A1B1C交AC于A2 , 作A2B2∥AB交B2 , B2A3平分∠A2B2C交AC于A3 , 作A3B3∥AB交BC于B3 , …,依此規(guī)律操作下去,用含a,n的代數(shù)式表示An﹣1An . (n為大于1的整數(shù),直接回答,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為原點,直線y=﹣2x﹣1與y軸交于點A,與直線y=﹣x交于點B,點B關于原點的對稱點為點C.
(Ⅰ)求過B,C兩點的拋物線y=ax2+bx﹣1解析式;
(Ⅱ)P為拋物線上一點,它關于原點的對稱點為Q.
①當四邊形PBQC為菱形時,求點P的坐標;
②若點P的橫坐標為t(﹣1<t<1),當t為何值時,四邊形PBQC面積最大?最大值是多少?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年11月3日,我國第一枚大型運載火箭“長征5號”在海南文昌航天發(fā)射場順利升空,這標志著我國從航天大國邁向航天強國.如圖,火箭從地面L處發(fā)射,當火箭到達A點時,從位于地面R處雷達站測得AR的距離是6km,仰角為42.4°;1秒后火箭到達B點,此時測得仰角為45.5°.
(1)求發(fā)射臺與雷達站之間的距離LR;
(2)求這枚火箭從A到B的平均速度是多少?(結果精確到0.01,參考數(shù)據(jù):sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉淇準備完成題目:化簡:,發(fā)現(xiàn)系數(shù)“”印刷不清楚.
(1)他把“”猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);
(2)他媽媽說:“你猜錯了,我看到該題標準答案的結果是常數(shù).”通過計算說明原題中“”是幾?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,平面直角坐標系中,直線y=kx+b與x軸交于點A(6,0),與y軸交于點B,與直線y=2x交于點C(a,4).
(1)求點C的坐標及直線AB的表達式;
(2)如圖2,在(1)的條件下,過點E作直線l⊥x軸于點E,交直線y=2x于點F,交直線y=kx+b于點G,若點E的坐標是(4,0).
①求△CGF的面積;
②直線l上是否存在點P,使OP+BP的值最?若存在,直接寫出點P的坐標;若不存在,說明理由;
(3)若(2)中的點E是x軸上的一個動點,點E的橫坐標為m(m>0),當點E在x軸上運動時,探究下列問題:
當m取何值時,直線l上存在點Q,使得以A,C,Q為頂點的三角形與△AOC全等?請直接寫出相應的m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在甲、乙兩名同學中選拔一人參加“中華好詩詞”大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下: 甲:79,86,82,85,83
乙:88,79,90,81,72.
回答下列問題:
(1)甲成績的平均數(shù)是 , 乙成績的平均數(shù)是;
(2)經(jīng)計算知S甲2=6,S乙2=42.你認為選拔誰參加比賽更合適,說明理由;
(3)如果從甲、乙兩人5次的成績中各隨機抽取一次成績進行分析,求抽到的兩個人的成績都大于80分的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=8,sin∠BCD= ,CE平分∠BCD,交邊AD于點E,聯(lián)結BE并延長,交CD的延長線于點P.
(1)求梯形ABCD的周長;
(2)求PE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com