【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F為垂足.下列結論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是( 。
A.①②③B.①③④C.①②④D.①②③④
【答案】D
【解析】
根據(jù)SAS證△ABD≌△EBC,可得∠BCE=∠BDA,結合∠BCD=∠BDC可得①②正確;根據(jù)角的和差以及三角形外角的性質可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正確;過E作EG⊥BC于G點,證明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用線段和差即可得到④正確.
解:①∵BD為△ABC的角平分線,
∴∠ABD=∠CBD,
∴在△ABD和△EBC中,,
∴△ABD≌△EBC(SAS),①正確;
②∵BD為△ABC的角平分線,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正確;
③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,
∴∠DCE=∠DAE,
∴△ACE為等腰三角形,
∴AE=EC,
∵△ABD≌△EBC,
∴AD=EC,
∴AD=AE=EC.③正確;
④過E作EG⊥BC于G點,
∵E是∠ABC的角平分線BD上的點,且EF⊥AB,
∴EF=EG(角平分線上的點到角的兩邊的距離相等),
∵在Rt△BEG和Rt△BEF中,,
∴Rt△BEG≌Rt△BEF(HL),
∴BG=BF,
∵在Rt△CEG和Rt△AFE中,,
∴Rt△CEG≌Rt△AEF(HL),
∴AF=CG,
∴BA+BC=BF+FA+BGCG=BF+BG=2BF,④正確.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】若a是不為1的有理數(shù),我們把 稱為a的差倒數(shù).如:2的差倒數(shù)是=﹣1,﹣1的差倒數(shù)是.已知a1=﹣,a2是a1的差倒數(shù),a3是a2的差倒數(shù),a4是a3的差倒數(shù),…,依此類推.
(1)分別求出a2,a3,a4的值;
(2)求a1+a2+a3+…+a3600的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D是弧BC的中點,DE⊥AC交AC的延長線于E,⊙O的切線BF交AD的延長線于F.
(1)求證:DE是⊙O的切線;
(2)若DE=3,⊙O的半徑為5.求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖直線l:y=kx+6與x軸、y軸分別交于點B、C兩點,點B的坐標是(﹣8,0),點A的坐標為(﹣6,0).
(1)求k的值.
(2)若點P是直線l在第二象限內一個動點,當點P運動到什么位置時,△PAC的面積為3,求出此時直線AP的解析式.
(3)在x軸上是否存在一點M,使得△BCM為等腰三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】從2開始,連續(xù)的偶數(shù)相加,它們和的情況如下表:
加數(shù)的個數(shù)n | S |
1 | 2=1×2 |
2 | 2+4=6=2×3 |
3 | 2+4+6=12=3×4 |
4 | 2+4+6+8=20=4×5 |
5 | 2+4+6+8+10=30=5×6 |
(1)若n=8時,則S的值為_____________.
(2)根據(jù)表中的規(guī)律猜想:用n的式子表示S的公式為:S=2+4+6+8+…+2n=__________________.
(3)根據(jù)上題的規(guī)律計算2+4+6+8+10+…+98+100的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是兩塊完全一樣的含30°角的直角三角尺,分別記做△ABC與△A′B′C′,現(xiàn)將兩塊三角尺重疊在一起,設較長直角邊的中點為M,繞中點M轉動上面的三角尺ABC,使其直角頂點C恰好落在三角尺A′B′C′的斜邊A′B′上.當∠A=30°,AC=10時,兩直角頂點C,C′間的距離是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D為BC邊的任意一點,以點D為頂點的∠EDF的兩邊分別與邊AB,AC交于點E、F,且∠EDF與∠A互補.
(1)如圖1,若AB=AC,D為BC的中點時,則線段DE與DF有何數(shù)量關系?請直接寫出結論;
(2)如圖2,若AB=kAC,D為BC的中點時,那么(1)中的結論是否還成立?若成立,請給出證明;若不成立,請寫出DE與DF的關系并說明理由;
(3)如圖3,若=a,且=b,直接寫出= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,Rt△ABC中,∠BAC=90°,AB=5,AC=12,將△ABC沿射線BC方向平移m個單位長度到△DEF,頂點A、B、C分別與D、E、F對應,若以點A、D、E為頂點的三角形是等腰三角形,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,,是邊上的中線,過作,垂足為,過作交的延長線于,則下列結論正確的是______.(請?zhí)顚懶蛱枺?/span>
①若,則;②;③;④;⑤;⑥連接,則.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com