【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)GH型產(chǎn)品由4個(gè)G型裝置和3個(gè)H型裝置配套組成.工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置.工廠將所有工人分成兩組同時(shí)開(kāi)始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.

(1)按照這樣的生產(chǎn)方式,工廠每天能配套組成多少套GH型電子產(chǎn)品?請(qǐng)列出二元一次方程組解答此問(wèn)題.

(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G型裝置的加工,且每人每天只能加工4個(gè)G型裝置.1.設(shè)原來(lái)每天安排x名工人生產(chǎn)G型裝置,后來(lái)補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)2.請(qǐng)問(wèn)至少需要補(bǔ)充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?

【答案】(1)工廠每天能配套組成48GH型電子產(chǎn)品;(2) 30名.

【解析】試題分析:1)設(shè)x人加工G型裝置,y人加工H型裝置,利用每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置得出等式求出答案;

2)利用每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品得出等式表示出x的值,進(jìn)而利用不等式解法得出答案.

試題解析:(1)解:設(shè)x人加工G型裝置,y人加工H型裝置,由題意可得:

解得: ,

6×32÷4=48(套),

答:按照這樣的生產(chǎn)方式,工廠每天能配套組成48GH型電子產(chǎn)品.

2由題意可知:36x+4m=380-x×4,

解得:x,

×4=240個(gè)),

6x+4m≥240

+4m≥240

解得:m≥30

答:至少需要補(bǔ)充30名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,給出下列結(jié)論:①abc>0;②a﹣b+c<0;③2a+b﹣c<0;④4a+2b+c>0,⑤若點(diǎn)(﹣ ,y1)和( ,y2)在該圖象上,則y1>y2 . 其中正確的結(jié)論是(填入正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,且EH=EB.下列四個(gè)結(jié)論:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你認(rèn)為正確的序號(hào)是( )

A. ①②③ B. ①③④ C. ②③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的頂點(diǎn)A(﹣2,3),B(﹣3,1),C(0,1),規(guī)定“平行四邊形ABCD先沿x軸翻折,再向左平移1個(gè)單位”為一次變換,則連續(xù)經(jīng)過(guò)2017次變換后,平行四邊形ABCD的對(duì)角線的交點(diǎn)M的坐標(biāo)為(
A.(﹣2017,2)
B.(﹣2017,﹣2)
C.(﹣2018,﹣2)
D.(﹣2018,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校七年級(jí)三班為配合國(guó)家級(jí)衛(wèi)生城市創(chuàng)建驗(yàn)收,自愿組織參加環(huán)衛(wèi)整治活動(dòng),學(xué)校用兩張統(tǒng)計(jì)圖公布了該班學(xué)生參加本次活動(dòng)的情況.小明、小華、小麗三個(gè)同學(xué)看了這張統(tǒng)計(jì)圖后,小明說(shuō):該班共有25名學(xué)生參加了本次活動(dòng)小華說(shuō):該班參加美化數(shù)目的學(xué)生占參加本次活動(dòng)人數(shù)的40%”小麗說(shuō):該班有6名學(xué)生清掃道路.小明、小華、小麗三人說(shuō)法正確的有( 。

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)“足球進(jìn)校園”的目標(biāo),某校計(jì)劃為學(xué)校足球隊(duì)購(gòu)買一批足球,已知購(gòu)買2個(gè)A品牌的足球和3個(gè)B品牌的足球共需380元;購(gòu)買4個(gè)A品牌的足球和2個(gè)B品牌的足球共需360元.

(1)求A,B兩種品牌的足球的單價(jià).

(2)求該校購(gòu)買20個(gè)A品牌的足球和2個(gè)B品牌的足球的總費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖①,△ABC、△AED是兩個(gè)全等的等腰直角三角形(其頂點(diǎn)B、E重合),∠BAC=∠AED=90°,O為BC的中點(diǎn),F(xiàn)為AD的中點(diǎn),連接OF.

(1)問(wèn)題發(fā)現(xiàn)
①如圖①,線段OF與EC的數(shù)量關(guān)系為;
②將△AED繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°,如圖②,OF與EC的數(shù)量關(guān)系為;

(2)類比延伸
將圖①中△AED繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到如圖③所示的位置,請(qǐng)判斷線段OF與EC的數(shù)量關(guān)系,并給出證明.

(3)拓展探究
將圖①中△AED繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α,0°≤α≤90°,AD= ,△AED在旋轉(zhuǎn)過(guò)程中,存在△ACD為直角三角形,請(qǐng)直接寫(xiě)出線段CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,E是直線AB,CD內(nèi)部一點(diǎn),ABCD,連接EAED

(1)探究猜想:

①若∠A=20°,∠D=40°,則∠AED= °

②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.

(2)拓展應(yīng)用:

如圖②,射線FEl1,l2交于分別交于點(diǎn)E、F,ABCDa,b,c,d分別是被射線FE隔開(kāi)的4個(gè)區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個(gè)區(qū)域上的點(diǎn),猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫(xiě)出兩種,可直接寫(xiě)答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】銷售有限公司到某汽車制造有限公司選購(gòu)AB兩種型號(hào)的轎車,用300萬(wàn)元可購(gòu)進(jìn)A型轎車10輛,B型轎車15輛;用300萬(wàn)元可購(gòu)進(jìn)A型轎車8輛,B型轎車18.

(1)A、B兩種型號(hào)的轎車每輛分別多少元?

(2)若該汽車銷售公司銷售一輛A型轎車可獲利8000元,銷售一輛B型轎車可獲利5000元,該汽車銷售公司準(zhǔn)備用不超過(guò)400萬(wàn)元購(gòu)進(jìn)AB兩種型號(hào)轎車共30輛,且這兩種轎車全部售出后總獲利不低于20.4萬(wàn)元,問(wèn):有幾種購(gòu)車方案?在這幾種購(gòu)車方案中,哪種獲利最多?

查看答案和解析>>

同步練習(xí)冊(cè)答案