【題目】兩名同學(xué)在調(diào)查時使用下面兩種提問方式,你認(rèn)為哪一種更好些( )
A. 難道你不認(rèn)為科幻片比武打片更有意思嗎?
B. 你更喜歡哪一類電影 ——科幻片還是武打片?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點(diǎn)E,交線段DC的延長線于點(diǎn)F,以EC、CF為鄰邊作平行四邊形ECFG.
(1)如圖1,證明平行四邊形ECFG為菱形;
(2)如圖2,若∠ABC=90°,M是EF的中點(diǎn),求∠BDM的度數(shù);
(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點(diǎn),
且∠ABM=∠BAM,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,E是AB上一點(diǎn),F是AD延長線上一點(diǎn),且DF=BE.易證:CE=CF.
(1)在圖1中,若G在AD上,且∠GCE=450.試猜想GE,BE,GD三線段之間的數(shù)量關(guān)系,并證明你的結(jié)論.
(2)運(yùn)用(1)中解答所積累的經(jīng)驗和知識,完成下面兩題:
①如圖2,在四邊形ABCD中∠B=∠D=900,BC=CD,點(diǎn)E,點(diǎn)G分別是AB邊,AD邊上的動點(diǎn).若∠BCD=α,∠ECG=β,試探索當(dāng)α和β滿足什么關(guān)系時,圖1中GE,BE,GD三線段之間的關(guān)系仍然成立,并說明理由.
②在平面直角坐標(biāo)中,邊長為1的正方形OABC的兩頂點(diǎn)A,C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABC繞O點(diǎn)順時針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖3).設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?若不變,請直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有40個數(shù)據(jù),其中最大值為35,最小值為14,若取組距為4,則應(yīng)該分的組數(shù)是( 。
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過點(diǎn)C,過點(diǎn)C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關(guān)系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.內(nèi)錯角相等,兩直線平行. B. 兩直線平行,同旁內(nèi)角互補(bǔ).
C. 相等的角是對頂角. D. 等角的補(bǔ)角相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.-3(x-1)=-3x-1
B.-3(x-1)=-3x+1
C.-3(x-1)=-3x-3
D.-3(x-1)=-3x+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AE⊥BC,F(xiàn)G⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.
(1)求證:AB∥CD;
(2)求∠C的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com