【題目】小麗騎車從甲地到乙地,小明騎車從乙地到甲地,小麗的速度小于小明的速度,兩人同時出發(fā),沿同一條公路勻速前進.圖中的折線表示兩人之間的距離與小麗的行駛時間之間的函數(shù)關系.請你根據(jù)圖像進行探究:

1)小麗的速度是______,小明的速度是_________;

2)求線段所表示的yx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

3)若兩人相距,試求小麗的行駛時間?

【答案】(1)10;20;(2);(3小時或2小時

【解析】

1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以分別求得小麗和小明的速度;

2)根據(jù)(1)中的結果和圖象中的數(shù)據(jù)可以求得點C的坐標,從而可以解答本題

3)根據(jù)題意分情況討論即可求解.

1)從可以看出:兩人從相距30千米的兩地相遇用了1個小時時間,

千米/時,小麗用了3個小時走完了30千米的全程,

千米/時,

千米/時;

故答案為:10;20;

2C點的意義是小明騎車從乙地到甲地用了小時,

此時小麗和小明的距離是

∴C點坐標是.

對應的函數(shù)表達式為,

則將點,分別代入表達式得,

解得:,

∴BC解析式為

3當兩人相遇前:(小時);

當兩人相遇后:(小時).

答:小麗出發(fā)小時或2小時時,兩人相距20公里.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料,并解決問題.

1)已知在ABC中,∠A60°,圖1-圖3ABC的內角平分線或外角平分線交于點O,請直接求出下列角度的度數(shù).

如圖1,∠O     ; 如圖2,∠O     ; 如圖3,∠O     ;如圖4,∠ABC,∠ACB的三等分線交于點O1,O2,連接O1O2,則∠BO2O1    

2)如圖5,點OABC兩條內角平分線的交點,求證:∠O90°A.

3)如圖6,ABC中,∠ABC的三等分線分別與∠ACB的平分線交于點O1,O2,若∠1115°,∠2135°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的口袋中裝有4個完全相同的小球,分別標有數(shù)字,另一個可以自由旋轉的圓盤,被分成面積相等的3個扇形區(qū)域,分別標有數(shù)字(如圖).小穎和小亮想通過游戲來決定誰代表學校參加歌詠比賽,游戲規(guī)則為:一個人口袋中摸出一個小球,另一個人轉動圓盤,如果所摸球上的數(shù)字與圓盤上轉出數(shù)字之和小于4,那么小穎去,否則小亮去.

⑴.用樹狀圖或列表法求出小穎參加比賽的概率;

⑵.你認為該游戲公平嗎?請說明理由;若不公平,請修改該游戲的規(guī)則,使游戲公平.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小聰和小慧沿圖l中的風景區(qū)游覽,約好在飛瀑見面.小聰駕駛電動汽車從賓館出發(fā),小慧也于同一時間騎電動自行車從塔林出發(fā).2中的圖像分別表示兩人離賓館的路程與時間的函數(shù)關系,試結合圖中信息回答:

1)飛瀑與賓館相距__________,小聰出發(fā)時與賓館的距離_________;

2)若小聰出發(fā)后,速度變?yōu)樾』鄣?/span>2倍,則小聰追上小慧時,他們是否已經過了草甸?

3)當出發(fā)多長時間時,兩人相距?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均數(shù)和方差分別是( 。

A. 2, B. 2,1 C. 4, D. 4,3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學興趣小組為了解我校初三年級1800名學生的身體健康情況,從初三隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

補全條形統(tǒng)計圖,并估計我校初三年級體重介于47kg53kg的學生大約有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作MECD于點E,1=2.

(1)若CE=1,求BC的長;

(2)求證:AM=DF+ME.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩個全等的直角三角形△ABD、△ACE拼在一起(圖(1)).令△ABD不動

(1)若將△ACE繞點A逆時針旋轉,連接DEMDE的中點,連接MBMC(圖(2)),證明:MB=MC

(2)若將圖(1)中的CE向上平移,∠CAE不變,連接DE,MDE的中點,連接MB、MC(圖(3)),判斷MB、MC的數(shù)量關系,并說明理由.

(3)在(2)中,若∠CAE的大小改變(圖(4)),其他條件不變,則(2)中的MB、MC的數(shù)量關系還成立嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知中,,,過頂點作射線.

1)當射線外部時,如圖①,點在射線上,連結、,已知,,.

①試證明是直角三角形;

②求線段的長.(用含的代數(shù)式表示)

2)當射線內部時,如圖②,過點于點,連結,請寫出線段、的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案