【題目】如圖,矩形ABCD的對角線AC、BD相交于點O,AB:BC=2:1,且BE∥AC,CE∥DB,連接DE,則tan∠EDC=( )
A.B.C.D.
【答案】B
【解析】
過點E作EF⊥直線DC交線段DC延長線于點F,連接OE交BC于點G.根據(jù)鄰邊相等的平行四邊形是菱形即可判斷四邊形OBEC是菱形,則OE與BC垂直平分,易得EF=x,CF=x.再由銳角三角函數(shù)定義作答即可.
解:∵矩形ABCD的對角線AC、BD相交于點O,AB:BC=2:1,
∴BC=AD,
設AB=2x,則BC=x.
如圖,過點E作EF⊥直線DC交線段DC延長線于點F,連接OE交BC于點G.
∵BE∥AC,CE∥BD,
∴四邊形BOCE是平行四邊形,
∵四邊形ABCD是矩形,
∴OB=OC,
∴四邊形BOCE是菱形.
∴OE與BC垂直平分,
∴EF=AD=x,OE∥AB,
∴四邊形AOEB是平行四邊形,
∴OE=AB=2x,
∴CF=OE=x.
∴tan∠EDC===.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,點E在對角線AC上,點F在邊CD上,連接BE、EF.若∠EFC=90°+∠CBE,BE=7,EF=10.則點D到EF的距離為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+x+c經(jīng)過A(4,0),B(1,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)在直線AC上方的拋物線上是否存在一點D,使得△DCA的面積最大?若存在,求出點D的坐標及△DCA面積的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的材料:
如果函數(shù) y=f(x)滿足:對于自變量 x 的取值范圍內(nèi)的任意 x1,x2,
(1)若 x1<x2,都有 f(x1)<f(x2),則稱 f(x)是增函數(shù);
(2)若 x1<x2,都有 f(x1)>f(x2),則稱 f(x)是減函數(shù).
例題:證明函數(shù)f(x)= (x>0)是減函數(shù).
證明:設 0<x1<x2,
f(x1)﹣f(x2)=.
∵0<x1<x2,
∴x2﹣x1>0,x1x2>0.
∴>0.即 f(x1)﹣f(x2)>0.
∴f(x1)>f(x2).
∴函數(shù) f(x)= (x>0)是減函數(shù).
根據(jù)以上材料,解答下面的問題:
已知函數(shù).
f(﹣1)= +(﹣2)=-1,f(﹣2)= +(﹣4)=.
(1)計算:f(﹣3)= ,f(﹣4)= ;
(2)猜想:函數(shù)是 函數(shù)(填“增”或“減”);
(3)請仿照例題證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:
①CF=AE;②OE=OF;③圖中共有四對全等三角形;④四邊形ABCD是平行四邊形;其中正確結(jié)論的是_____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某區(qū)九年級學生身體素質(zhì)情況,該區(qū)從全區(qū)九年級學生中隨機抽取了部分學生進行了一次體育考試科目測試(把測試結(jié)果分為四個等級:A級;優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如圖兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學生是__;
(2)求圖1中的度數(shù)是 ,把圖2條形統(tǒng)計圖補充完整;
(3)該區(qū)九年級有學生名,如果全部參加這次體育科目測試,請估計不及格的人數(shù)為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直徑為10的⊙A經(jīng)過點C(0,5)和點O (0,0),B是y軸右側(cè)⊙A優(yōu)弧上一點,則∠OBC 的余弦值為 _________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知兩地相距,甲、乙兩輛貨車裝滿貨物分別從兩地相向而行,圖中分別表示甲、乙兩輛貨車離地的距離與行駛時間之間的函數(shù)關(guān)系.請你根據(jù)以上信息,解答下列問題:
(1)分別求出直線所對應的函數(shù)關(guān)系式;
(2)何時甲貨車離地的距離大于乙貨車離地的距離?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com