【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問題:
已知:如圖,四邊形ABCD是平行四邊形;
求作:菱形AECF,使點E,F分別在BC,AD上.
小凱的作法如下:
(1)連接AC;
(2)作AC的垂直平分線EF分別交BC,AD于E,F.
(3)連接AE,CF
所以四邊形AECF是菱形.
老師說:“小凱的作法正確”.
回答下列問題:
根據(jù)小凱的做法,小明將題目改編為一道證明題,請你幫助小明完成下列步驟:
(1)已知:在平行四邊形ABCD中,點E、F分別在邊BC、AD上, .(補(bǔ)全已知條件)
求證:四邊形AECF是菱形.
(2)證明:(寫出證明過程)
【答案】(1)EF垂直平分AC;(2)證明見解析
【解析】
(1)根據(jù)菱形對角線互相垂直且平分添加即可;(2)如圖:根據(jù)垂直平分線的性質(zhì)可證明AE=CE、AF=CF,再由ABCD是平行四邊形可證明∠FAC=∠ECA、∠AFE=∠FEC,即可證明△AOF≌△COE,進(jìn)而證明AF=CE,即可證明AE=EC=CF=FA,可證明四邊形AECF是菱形.
(1)添加EF垂直平分AC;
(2)∵EF垂直平分AC,
∴AF=CF,AE=EC,AO=CO,
∵AF//CE,
∴∠FAC=∠ECA、∠AFE=∠FEC,
∵AO=CO,
∴△AOF≌△COE,
∴AF=CE,
∴AE=EC=CF=FA,
∴四邊形AECF是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA與⊙O相切于點A,弦AB⊥OP,垂足為C,OP與⊙O相交于D點,已知OP=4,∠OPA=30°.求OC和AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.
(1)畫出△ABC關(guān)于x軸對稱的圖形△A1B1C1;
(2)寫出頂點A1,B1,C1的坐標(biāo);
(3)若正方形網(wǎng)格每兩個格點間為一個單位長度,求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,它是菱形 B. 當(dāng)AC⊥BD時,它是菱形
C. 當(dāng)∠ABC=90°時,它是矩形 D. 當(dāng)AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,BD⊥AC于點D;CE平分∠ACB,交AB于點E,交BD于點F.
(1)求證:△BEF是等腰三角形;
(2)求證:BD=(BC+BF).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠DAE=∠E,∠B=∠D.直線AD與BE平行嗎?直線AB與DC平行嗎?說明理由(請在下面的解答過程的空格內(nèi)填空或在括號內(nèi)填寫理由).
解:直線AD與BE平行,直線AB與DC .
理由如下:
∵∠DAE=∠E,(已知)
∴ ∥ ,(內(nèi)錯角相等,兩條直線平行)
∴∠D=∠DCE. (兩條直線平行,內(nèi)錯角相等)
又∵∠B=∠D,(已知)
∴∠B= ,(等量代換)
∴ ∥ .(同位角相等,兩條直線平行)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,已知△ABC≌△FDE,若A點的坐標(biāo)為(a,1),BC∥x軸,B點的坐標(biāo)為(b,-2),D、E兩點都在y軸上,則F點到y軸的距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y1= (x>0)圖象上一點,過點A作x軸的平行線,交反比例函數(shù)y2= (x>0)的圖象于點B,連接OA、OB,若△OAB的面積為2,則k的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com