【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,EF分別是邊AB、BC上的動(dòng)點(diǎn),且EF6,MEF中點(diǎn),P是邊AD上的一個(gè)動(dòng)點(diǎn),則CP+PM的最小值是_____

【答案】83

【解析】

延長(zhǎng)CDC',使C'D=CD,CP+PM=C'P+PM,當(dāng)C',PM三點(diǎn)共線時(shí),C'P+PM的值最小,根據(jù)題意,點(diǎn)M的軌跡是以B為圓心,3為半徑的圓弧上,圓外一點(diǎn)C'到圓上一點(diǎn)M距離的最小值C'M=C'B3,根據(jù)勾股定理即可得到結(jié)論.

延長(zhǎng)CDC',使C'D=CD

PDCD,∴PDCC'的垂直平分線,∴CP=C'P,則CP+PM=C'P+PM,當(dāng)C'P,M三點(diǎn)共線時(shí),C'P+PM的值最小,根據(jù)題意,點(diǎn)M的軌跡是以B為圓心,3為半徑的圓弧上,圓外一點(diǎn)C'到圓上一點(diǎn)M距離的最小值C'M=C'B3

BC=CD=8,∴CC'=16,∴C'D==8,∴CP+PM的最小值是

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),交y 軸于點(diǎn)C

1)求拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)為拋物線上一點(diǎn),是否存在點(diǎn)使,若存在請(qǐng)直接給出點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

3)將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),與拋物線交于另一點(diǎn),求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:三角形ABC內(nèi)接于圓O,∠BAC∠ABC的角平分線AEBE相交于點(diǎn)E,延長(zhǎng)AE交外接圓O于點(diǎn)D,連接BD,DC,且∠BCA=60°

1)求∠BED的大。

2)證明:△BED為等邊三角形;

3)若∠ADC=30°,圓O的半徑為r,求等邊三角形BED的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,cm, cm,中,,cm,cmEFBC上,保持不動(dòng),并將1cm/s的速度向點(diǎn)C運(yùn)動(dòng),移動(dòng)開始前點(diǎn)F與點(diǎn)B重合,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),停止移動(dòng).邊DEAB相交于點(diǎn)G,連接FG,設(shè)移動(dòng)時(shí)間為ts).

1從移動(dòng)開始到停止,所用時(shí)間為________s;

2)當(dāng)DE平分AB時(shí),求t的值;

3)當(dāng)為等腰三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,以為直徑作⊙,交于點(diǎn)為弧上一點(diǎn),連接、,交于點(diǎn).

(1),求證:為⊙的切線;

(2),求證:平分;

(3)(2)的條件下,若,求⊙的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠Cα.⊙OABC的內(nèi)切圓,⊙P分別與CA的延長(zhǎng)線、CB的延長(zhǎng)線以及直線AB均只有一個(gè)公共點(diǎn),⊙O的半徑為m,⊙P的半徑為n

1)當(dāng)α90°時(shí),AC6,BC8時(shí),m   ,n   

2)當(dāng)α取下列度數(shù)時(shí),求ABC的面積(用含有m、n的代數(shù)式表示).

①如圖①,α90°;

②如圖②,α60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,∠B90°,ADBC,且AD4cm,AB6cm,DC10cm.若動(dòng)點(diǎn)PA點(diǎn)出發(fā),以每秒4cm的速度沿線段AD、DCC點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)QC點(diǎn)出發(fā)以每秒5cm的速度沿CBB點(diǎn)運(yùn)動(dòng),當(dāng)Q點(diǎn)到達(dá)B點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,

(1)直角梯形ABCDBC_____cm,周長(zhǎng)為______cm.

(2)當(dāng)t為多少時(shí),四邊形PQCD成為平行四邊形?

(3)是否存在t,使得P點(diǎn)在線段DC上且PQDC?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)D在⊙O的直徑AB延長(zhǎng)線上,點(diǎn)C在⊙O上,過(guò)點(diǎn)DEDAD,與AC的延長(zhǎng)線相交于點(diǎn)E,且CDDE

1)求證:CD為⊙O的切線;

2)若AB8,且BCCE時(shí),求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:在圖(1)(2)所示拋物線中,拋物線與軸交于、,與軸交于,點(diǎn)是拋物線的頂點(diǎn),過(guò)平行于軸的直線是它的對(duì)稱軸,點(diǎn)在對(duì)稱軸上運(yùn)動(dòng)。僅用無(wú)刻度的直尺畫線的方法,按要求完成下列作圖:

1)在圖①中作出點(diǎn),使線段最;

2)在圖②中作出點(diǎn),使線段最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案