【題目】解方程

(1)

(配方法)

【答案】(1),;(2),;(3),;(3);(4),;(5),;(6),..

【解析】

(1)利用直接開(kāi)平方法進(jìn)行求解即可得;

(2)利用公式法進(jìn)行求解即可得;

(3)先將常數(shù)項(xiàng)移到方程的右側(cè),然后兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方,配方后利用直接開(kāi)平方法求解即可得;

(4)移項(xiàng)后利用因式分解法進(jìn)行求解即可得;

(5)利用因式分解法進(jìn)行求解即可得;

(6)先化為一般式,然后再利用因式分解法進(jìn)行求解即可.

1)兩邊開(kāi)方得,,

,

,;

(2),,

,

,;

(3)移項(xiàng),得,

配方,得,

兩邊直接開(kāi)平方,得

,

,

(4)原方程化為:,

,

,;

(5)原方程化為:,

,

(6)原方程化為:,

,

,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F.

(1)求證:AB=CF;

(2)連接DE,若AD=2AB,求證:DEAF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水龍頭關(guān)閉不緊會(huì)造成滴水,小明用可以顯示水量的容器做圖①所示的試驗(yàn),并根據(jù)試驗(yàn)數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時(shí)間t(h)的函數(shù)關(guān)系圖象,請(qǐng)結(jié)合圖象解答下列問(wèn)題:

(1)容器內(nèi)原有水多少?

(2)求Wt之間的函數(shù)關(guān)系式,并計(jì)算在這種滴水狀態(tài)下一天的滴水量是多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)閱讀下列材料:

問(wèn)題:如圖,在正方形和平行四邊形中,點(diǎn),在同一條直線上,是線段的中點(diǎn),連接,

探究:當(dāng)的夾角為多少度時(shí),平行四邊形是正方形?

小聰同學(xué)的思路是:首先可以說(shuō)明四邊形是矩形;然后延長(zhǎng)于點(diǎn),構(gòu)造全等三角形,經(jīng)過(guò)推理可以探索出問(wèn)題的答案.

請(qǐng)你參考小聰同學(xué)的思路,探究并解決這個(gè)問(wèn)題.

(1)求證:四邊形是矩形;

(2)的夾角為________度時(shí),四邊形是正方形.

理由:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MNBC.設(shè)MN交ACB的平分線于點(diǎn)E,交ACB的外角平分線于點(diǎn)F.

(1)求證:OE=OF;

(2)若CE=12,CF=5,求OC的長(zhǎng);

(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,AD=AE,BECD相交于O.圖中全等的三角形有( 。⿲(duì).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠MON40°,P為∠MON內(nèi)一定點(diǎn),OM上有一點(diǎn)AON上有一點(diǎn)B,當(dāng)PAB的周長(zhǎng)取最小值時(shí),∠APB的度數(shù)是_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是邊長(zhǎng)為的等邊三角形,動(dòng)點(diǎn)同時(shí)從、兩點(diǎn)出發(fā),分別沿、勻速運(yùn)動(dòng),其中點(diǎn)運(yùn)動(dòng)的速度是,點(diǎn)運(yùn)動(dòng)的速度是,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),、兩點(diǎn)都停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,解答下

列問(wèn)題:

當(dāng)時(shí),判斷的形狀,并說(shuō)明理由;

設(shè)的面積為,求的函數(shù)關(guān)系式;

于點(diǎn),連接,當(dāng)為何值時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】張莊甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買門票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為y(元),在乙園所需總費(fèi)用為y(元),yy之間的函數(shù)關(guān)系如圖所示,折線OAB表示y之間的函數(shù)關(guān)系.

1)甲采摘園的門票是  元,在乙園采摘草莓超過(guò)______后超過(guò)部分有打折優(yōu)惠;

2)當(dāng)采摘量時(shí),采摘多少千克草莓,甲、乙兩家采摘園的總費(fèi)用相同.

查看答案和解析>>

同步練習(xí)冊(cè)答案