【題目】(12分)已知,在平面直角坐標(biāo)系中,AB⊥x軸于點(diǎn)B,點(diǎn)A(a,b)滿(mǎn)足+|b-2|=0,平移線段AB使點(diǎn)A與原點(diǎn)重合,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)C.
(1)則a=____,b=____;點(diǎn)C坐標(biāo)為________;
(2)如下圖所示:點(diǎn)D(m, n)在線段BC上,求m、n滿(mǎn)足的關(guān)系式;
(3)如下圖所示:E是線段OB上一動(dòng)點(diǎn),以O(shè)B為邊作∠G=∠AOB,,交BC于點(diǎn)G,連CE交OG于點(diǎn)F,的當(dāng)點(diǎn)E在線段OB上運(yùn)動(dòng)過(guò)程中, 的值是否會(huì)發(fā)生變化?若變化請(qǐng)說(shuō)明理由,若不變,請(qǐng)求出其值.
【答案】 (1)4 2 (0,-2);(2)m-2n=4;(3)不變, 理由見(jiàn)解析.
【解析】(1)a= 4 ;b= 2 ;點(diǎn)C的坐標(biāo)為(0,-2).
(2)如圖1,過(guò)點(diǎn)D分別作DM⊥x軸于點(diǎn)M, DN⊥y軸于點(diǎn)N,連接OD.
∵AB⊥ x軸于點(diǎn)B,且點(diǎn)A,D,C三點(diǎn)的坐標(biāo)分別為:(4,2),(m,n),(0,-2)
∴OB=4,OC=2,MD=-n,ND=m
∴ S△BOC= OB×OC=4
又∵S△BOC = S△BOD+S△COD
= OB×MD+OC×ND
=×4×(-n)+×m×2
=m-2n
∴m-2n=4…………(7分)
(3)解: 的值不變,值為2.理由如下:
如圖所示:分別過(guò)點(diǎn)E,F作EP∥OA, FQ∥OA分別交y軸于點(diǎn)P,點(diǎn)Q
∵線段OC是由線段AB平移得到
∴BC∥OA 又∵EP∥OA
∴EP∥BC
∴∠GCF=∠PEC
∵EP∥OA
∴∠AOE=∠OEP
∴∠OEC=∠OEP+∠PEC
=∠AOE+∠GCF 同理:∠OFC=∠AOF+∠GCF…………(10分)
又∵∠AOB=∠BOG
∴∠OFC=2∠AOE+∠GCF
∴
=2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的圖像反映的過(guò)程是:甲乙兩人同時(shí)從地出發(fā),以各自的速度勻速向地行駛,甲先到地停留半小時(shí)后,按原路以另一速度勻速返回,直至與乙相遇.乙的速度為, 表示甲乙兩人相距的距離, 表示乙行駛的時(shí)間.現(xiàn)有以下個(gè)結(jié)論:①、兩地相距;②點(diǎn)的坐標(biāo)為;③甲去時(shí)的速度為;④甲返回的速度是.以上個(gè)結(jié)論中正確的是_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一件服裝標(biāo)價(jià)是300元,以8折銷(xiāo)售,至少可獲利20%,則這件服裝的進(jìn)價(jià)_____是_____元(第一空填“最多”或“最少”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=BD;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某等腰三角形兩邊長(zhǎng)長(zhǎng)分別為1,2,則周長(zhǎng)為( 。
A. 3 B. 4 C. 5 D. 4或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)看圖填空,并在括號(hào)內(nèi)注明理由依據(jù),
解: ∵∠1=30°, ∠2=30°
∴∠1=∠2
∴_______//________(_______________________________________)
又AC⊥AE(已知)
∴∠EAC=90°(______________)
∴∠EAB=∠EAC+∠1=120°
同理: ∠FBG=∠FBD+∠2=_________°.
∴∠EAB=∠FBG(_____________________________________).
∴______________//____________(同位角相等,兩直線平行)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD與菱形EFGH的對(duì)角線均交于點(diǎn)O,且EG∥BC,將矩形折疊,使點(diǎn)C與點(diǎn)O重合,折痕MN恰好過(guò)點(diǎn)G若AB=,EF=2,∠H=120°,則DN的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com