【題目】如圖,已知O為直線AD上一點(diǎn),OBAOC內(nèi)部一條射線且滿足∠AOB與∠AOC互補(bǔ),OM,ON分別為∠AOC,∠AOB的平分線.

1)∠COD與∠AOB相等嗎?請(qǐng)說(shuō)明理由;

2)若∠AOB=30°,試求∠AOM與∠MON的度數(shù);

3)若∠MON=42°,試求∠AOC的度數(shù).

【答案】(1)相等,理由見(jiàn)解析;(2)∠AOM=75°,∠MON=60°;(3132°

【解析】

1)由題意可得∠AOC+AOB=180°,∠AOC+DOC=180°,可以根據(jù)同角的補(bǔ)角相等得到∠COD=AOB
2)根據(jù)互補(bǔ)的定義可求∠AOC,再根據(jù)角平分線的定義可求∠AOM,根據(jù)角平分線的定義可求∠AON,根據(jù)角的和差關(guān)系可求∠MON的度數(shù);
3)設(shè)∠AOB=x°,則∠AOC=180°-x°,列方程,解方程即可求解.

1)∵∠AOC與∠AOB互補(bǔ),

∴∠AOC+AOB=180°,

∵∠AOC+DOC=180°,

∴∠COD=AOB;

2)∵∠AOB與∠AOC互補(bǔ),∠AOB=30°,

∴∠AOC=180°-30°=150°,

OM為∠AOB的平分線,

∴∠AOM=75°,

ON為∠AOB的平分線,

∴∠AON=15°,

∴∠MON=75°-15°=60°

3)設(shè)∠AOB=x°,則∠AOC=180°-x°

由題意,得

180-x-x=84,

-2x=-96

解得x=48,

故∠AOC=180°-48°=132°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)市委政府“加快建設(shè)天藍(lán)水碧地綠的美麗長(zhǎng)沙”的號(hào)召,我市某街道決定從備選的五種樹(shù)中選購(gòu)一種進(jìn)行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)抽取了部分居民,進(jìn)行“我最喜歡的一種樹(shù)”的調(diào)查活動(dòng)每人限選其中一種樹(shù),并將調(diào)查結(jié)果整理后,繪制成如圖兩個(gè)不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)所給信息解答以下問(wèn)題:

1這次參與調(diào)查的居民人數(shù)為:

2請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“楓樹(shù)”所在扇形的圓心角度數(shù);

4已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬(wàn)人,請(qǐng)你估計(jì)這8萬(wàn)人中最喜歡玉蘭樹(shù)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(5分)某自行車(chē)廠一周計(jì)劃生產(chǎn)1400輛自行車(chē),平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天生產(chǎn)量與計(jì)劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負(fù)):

⑴根據(jù)記錄可知前三天共生產(chǎn)________輛;

⑵產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)________輛;

⑶該廠實(shí)行計(jì)件工資制,每輛車(chē)60元,超額完成任務(wù)每輛獎(jiǎng)15元,少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)坐標(biāo)為Q(2,-1),且與y軸交于點(diǎn)C(0,3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線上的一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過(guò)點(diǎn)P作PDy軸,交AC于點(diǎn)D.

【1】求該拋物線的函數(shù)關(guān)系式;

【1】求點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段PD的最大值;

【1】當(dāng)ADP是直角三角形時(shí),求點(diǎn)P的坐標(biāo);

【1】在題(3)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線上,問(wèn)是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某出租車(chē)司機(jī)從公司出發(fā),在東西方向的人民路上連續(xù)接送5批客人,行駛路程記錄如下(規(guī)定向東為正,向西為負(fù),單位:km)

1)接送完第5批客人后,該駕駛員在公司什么方向,距離公司多少千米?

2)若該出租車(chē)每千米耗油0.2升,那么在這過(guò)程中共耗油多少升?

3)若該出租車(chē)的計(jì)價(jià)標(biāo)準(zhǔn)為:行駛路程不超過(guò)3km收費(fèi)10元,超過(guò)3km的部分按每千米加1.8元收費(fèi),在這過(guò)程中該駕駛員共收到車(chē)費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)數(shù)軸上的點(diǎn)進(jìn)行如下操作:先把點(diǎn)表示的數(shù)乘以3,再把所得數(shù)對(duì)應(yīng)的點(diǎn)向左平移1個(gè)單位,得到點(diǎn)的對(duì)應(yīng)點(diǎn).比如,點(diǎn)表示3,3乘以39,表示9的點(diǎn)向左平移1個(gè)單位為8,因此點(diǎn)的對(duì)應(yīng)點(diǎn)表示的數(shù)為8.

⑴點(diǎn),在數(shù)軸上,對(duì)線段上的每個(gè)點(diǎn)進(jìn)行上述操作后得到線段,其中點(diǎn),的對(duì)應(yīng)點(diǎn)分別為,.如圖,若點(diǎn)表示的數(shù)是1,則點(diǎn)表示的數(shù)是__________;若點(diǎn)表示的數(shù)是,則點(diǎn)表示的數(shù)是__________.

⑵若數(shù)軸上的點(diǎn)經(jīng)過(guò)上述操作后,位置不變,則點(diǎn)表示的數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有個(gè)填寫(xiě)運(yùn)算符號(hào)的游戲:在“”中的每個(gè)□內(nèi),填入中的某一個(gè)(可重復(fù)使用),然后計(jì)算結(jié)果.

1)計(jì)算:;

2)若請(qǐng)推算□內(nèi)的符號(hào);

3)在“”的□內(nèi)填入符號(hào)后,使計(jì)算所得數(shù)最小,直接寫(xiě)出這個(gè)最小數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別用a、b表示,且(a-202+|b+10|=0,P是數(shù)軸上的一個(gè)動(dòng)點(diǎn).

1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離;

2)已知線段OB上有點(diǎn)C|BC|=6,當(dāng)數(shù)軸上有點(diǎn)P滿足PB=2PC時(shí),求P點(diǎn)對(duì)應(yīng)的數(shù);

3)動(dòng)點(diǎn)P從原點(diǎn)開(kāi)始第一次向左移動(dòng)1個(gè)單位長(zhǎng)度,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度,第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,…….點(diǎn)P能移動(dòng)到與AB重合的位置嗎?若不能,請(qǐng)直接回答;若能,請(qǐng)直接指出,第幾次移動(dòng),與哪一點(diǎn)重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】嘉淇同學(xué)要證明命題兩組對(duì)邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫(xiě)出了如下不完整的已知和求證.

已知:如圖1,在四邊形ABCD中,BC=AD,AB=

求證:四邊形ABCD 四邊形.

(1)在方框中填空,以補(bǔ)全已知和求證;

(2)按嘉淇同學(xué)的思路寫(xiě)出證明過(guò)程;

(3)用文字?jǐn)⑹鏊C命題的逆命題.

查看答案和解析>>

同步練習(xí)冊(cè)答案