【題目】如圖,在Rt△ABC中,∠ABC=90°,∠BAC=32°,斜邊AC=6,將斜邊AC繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)26°到達(dá)AD的位置,連接CD,取線段CD的中點(diǎn)N,連接BN,則BN的長(zhǎng)為_________.
【答案】
【解析】
設(shè)M為AC中點(diǎn),連接AN,BM,MN,根據(jù)直角三角形斜邊中點(diǎn)定理得出MB=MN=,同時(shí)算出∠BMN=90°,最后利用勾股定理算出BN的長(zhǎng).
解:設(shè)M為AC中點(diǎn),連接AN,BM,MN,
由旋轉(zhuǎn)可知:AC=AD=6,∠CAD=26°,
∵∠BAC=32°,∠ABC=90°,
∴∠ACB=58°,
∵AC=AD,N為CD中點(diǎn),M為AC中點(diǎn),
∴MB=MC=MN=3,
∴∠MBC=∠MCB=58°,∠MCN=∠MNC=(180-26)÷2=77°,
∴∠BMC=64°,∠CMN=26°,
∴∠BMN=90°,即△BMN為等腰直角三角形,
∴BN=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線在同一平面內(nèi)有平行和相交兩種位置關(guān)系,線段首尾連接可以變換出很多不同的圖形,這些不同的角又有很多不同關(guān)系,今天我們就來(lái)探究一下這些奇妙的圖形吧!
(問(wèn)題探究)
(1)如圖1,請(qǐng)直接寫(xiě)出∠A+∠B+∠C+∠D+∠E= ;
(2)將圖1變形為圖2,∠A+∠DBE+∠C+∠D+∠E的結(jié)果如何?請(qǐng)寫(xiě)出證明過(guò)程;
(3)將圖1變形為圖3,則∠A+∠B+∠C+∠D+∠E的結(jié)果如何?請(qǐng)寫(xiě)出證明過(guò)程.
(變式拓展)
(4)將圖3變形為圖4,已知∠BGF=160°,那么∠A+∠B+∠C+∠D+∠E+∠F的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若A、B、C為數(shù)軸上三點(diǎn),若點(diǎn)C到A的距離是點(diǎn)C到B的距離2倍,我們就稱點(diǎn)C是(A,B)的好點(diǎn).例如,如圖1,點(diǎn)A表示的數(shù)為﹣1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是(A,B)的好點(diǎn);又如,表示0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D就不是(A,B)的好點(diǎn),但點(diǎn)D是(B,A)的好點(diǎn).
知識(shí)運(yùn)用:如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣2,點(diǎn)N所表示的數(shù)為4.
(1)數(shù) 所表示的點(diǎn)是(M,N)的好點(diǎn);
(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣20,點(diǎn)B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以2個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.當(dāng)t為何值時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】受氣候的影響,某超市蔬菜供應(yīng)緊張,需每天從外地調(diào)運(yùn)蔬菜1000斤.超市決定從甲、乙兩大型蔬菜棚調(diào)運(yùn)蔬菜,已知甲蔬菜棚每天最多可調(diào)出800斤,乙蔬菜棚每天最多可調(diào)運(yùn)600斤,從兩蔬菜棚調(diào)運(yùn)蔬菜到超市的路程和運(yùn)費(fèi)如下表:
到超市的路程(千米) | 運(yùn)費(fèi)(元/斤·千米) | |
甲蔬菜棚 | 120 | 0.03 |
乙蔬菜棚 | 80 | 0.05 |
(1)若某天調(diào)運(yùn)蔬菜的總運(yùn)費(fèi)為3840元,則從甲、乙兩蔬菜棚各調(diào)運(yùn)了多少斤蔬菜?
(2)設(shè)從甲蔬菜棚調(diào)運(yùn)蔬菜斤,總運(yùn)費(fèi)為元,試寫(xiě)出與的函數(shù)關(guān)系式,怎樣安排調(diào)運(yùn)方案才能使每天的總運(yùn)費(fèi)最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋子中裝有1個(gè)白球、3個(gè)紅球和6個(gè)黃球,這些球除顏色外都相同,將球搖勻.
(1) 從中任意摸出1個(gè)球,摸到 球的可能性大.
(2) 若現(xiàn)拿紅球和黃球共7個(gè)球放入袋中,你認(rèn)為怎樣放才能讓摸到紅球和黃球的可能性相同?(直接回答,無(wú)需解題過(guò)程)
(3) 若從中摸出5個(gè)球,其中有個(gè)黃球,當(dāng)= 時(shí),“摸到白球”是必然事件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一次函數(shù)(為常數(shù))的圖象與反比例函數(shù)(為常數(shù),且<0)的圖象交于A,B兩點(diǎn).
(1) 如圖①,當(dāng),時(shí),
① A ( , ),B ( , );
②直接寫(xiě)出使成立的的取值范圍;
(2) 如圖②,將(1)中直線AB向下平移,交反比例函數(shù)圖像于點(diǎn)C,D,連接OC,AC,若△AOC的面積為8,求的值;
(3) 若A,B兩點(diǎn)的橫坐標(biāo)分別為,,且,滿足,證明:2m-b=-3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:過(guò)P作PE∥AB,通過(guò)平行線性質(zhì)來(lái)求∠APC.
(1)按小明的思路,易求得∠APC的度數(shù)為_____度;
(2)問(wèn)題遷移:如圖2,AB∥CD,點(diǎn)P在射線OM上運(yùn)動(dòng),記∠PAB=α,∠PCD=β,當(dāng)點(diǎn)P在B、D兩點(diǎn)之間運(yùn)動(dòng)時(shí),問(wèn)∠APC與α、β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,如果點(diǎn)P在B、D兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)O、B、D三點(diǎn)不重合),請(qǐng)直接寫(xiě)出∠APC與α、β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將ABCD的邊AB延長(zhǎng)至點(diǎn)E,使BE=AB,連接DE、EC、BD、DE交BC于點(diǎn)O.
(1)求證:△ABD≌△BEC;
(2)若∠BOD=2∠A,求證:四邊形BECD是矩形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com