【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).

(1)求點B,C的坐標(biāo);
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

【答案】
(1)

解:∵點A(﹣1,0)在拋物線y=﹣(x﹣1)2+c上,

∴0=﹣(﹣1﹣1)2+c,得c=4,

∴拋物線解析式為:y=﹣(x﹣1)2+4,

令x=0,得y=3,∴C(0,3);

令y=0,得x=﹣1或x=3,∴B(3,0).


(2)

解:△CDB為直角三角形.理由如下:

由拋物線解析式,得頂點D的坐標(biāo)為(1,4).

如答圖1所示,過點D作DM⊥x軸于點M,則OM=1,DM=4,BM=OB﹣OM=2.

過點C作CN⊥DM于點N,則CN=1,DN=DM﹣MN=DM﹣OC=1.

在Rt△OBC中,由勾股定理得:BC= = = ;

在Rt△CND中,由勾股定理得:CD= = = ;

在Rt△BMD中,由勾股定理得:BD= = =

∵BC2+CD2=BD2

∴△CDB為直角三角形(勾股定理的逆定理).


(3)

解:設(shè)直線BC的解析式為y=kx+b,∵B(3,0),C(0,3),

,

解得k=﹣1,b=3,

∴y=﹣x+3,

直線QE是直線BC向右平移t個單位得到,

∴直線QE的解析式為:y=﹣(x﹣t)+3=﹣x+3+t;

設(shè)直線BD的解析式為y=mx+n,∵B(3,0),D(1,4),

,

解得:m=﹣2,n=6,

∴y=﹣2x+6.

連接CQ并延長,射線CQ交BD于點G,則G( ,3).

在△COB向右平移的過程中:

(I)當(dāng)0<t≤ 時,如答圖2所示:

設(shè)PQ與BC交于點K,可得QK=CQ=t,PB=PK=3﹣t.

設(shè)QE與BD的交點為F,則: ,解得 ,∴F(3﹣t,2t).

S=SQPE﹣SPBK﹣SFBE= PEPQ﹣ PBPK﹣ BEyF= ×3×3﹣ (3﹣t)2 t2t= t2+3t;

(II)當(dāng) <t<3時,如答圖3所示:

設(shè)PQ分別與BC、BD交于點K、點J.

∵CQ=t,

∴KQ=t,PK=PB=3﹣t.

直線BD解析式為y=﹣2x+6,令x=t,得y=6﹣2t,

∴J(t,6﹣2t).

S=SPBJ﹣SPBK= PBPJ﹣ PBPK= (3﹣t)(6﹣2t)﹣ (3﹣t)2= t2﹣3t+

綜上所述,S與t的函數(shù)關(guān)系式為:

S=


【解析】(1)首先用待定系數(shù)法求出拋物線的解析式,然后進一步確定點B,C的坐標(biāo);(2)分別求出△CDB三邊的長度,利用勾股定理的逆定理判定△CDB為直角三角形;(3)△COB沿x軸向右平移過程中,分兩個階段:(I)當(dāng)0<t≤ 時,如答圖2所示,此時重疊部分為一個四邊形;(II)當(dāng) <t<3時,如答圖3所示,此時重疊部分為一個三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和(
A.大于0
B.等于0
C.小于0
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=4,C為 的中點,D、E分別為OA,OB的中點,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形ABCDEF是正六邊形,曲線FK1K2K3K4K5K6K7…叫做“正六邊形的漸開線”,其中弧FK1 , 弧K1K2 , 弧K2K3 , 弧K3K4 , 弧K4K5 , 弧K5K6 , …的圓心依次按點A,B,C,D,E,F(xiàn)循環(huán),其弧長分別記為L1 , L2 , L3 , L4 , L5 , L6 , ….當(dāng)AB=1時,L2016等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y= (x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設(shè)直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請結(jié)合圖象直接寫出不等式k2x+b﹣ >0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機抽取了50名同學(xué)進行“舌尖上的長沙﹣我最喜愛的長沙小吃”調(diào)查活動,將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:
請根據(jù)所給信息解答以下問題:
(1)請補全條形統(tǒng)計圖;
(2)若全校有2000名同學(xué),請估計全校同學(xué)中最喜愛“臭豆腐”的同學(xué)有多少人?
(3)在一個不透明的口袋中有四個完全相同的小球,把它們分別標(biāo)號為四種小吃的序號A、B、C、D,隨機地摸出一個小球然后放回,再隨機地摸出一個小球,請用列表或畫樹形圖的方法,求出恰好兩次都摸到“A”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別為
A(﹣1,1),B(﹣3,1),C(﹣1,4).
①畫出△ABC關(guān)于y軸對稱的△A1B1C1
②將△ABC繞著點B順時針旋轉(zhuǎn)90°后得到△A2BC2 , 請在圖中畫出△A2BC2 , 并求出線段BC旋轉(zhuǎn)過程中所掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓的直徑,點D是 的中點,∠ABC=50°,則∠DAB等于(
A.55°
B.60°
C.65°
D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點O在直線AB上,點A1、A2、A3 , …在射線OA上,點B1、B2、B3 , …在射線OB上,圖中的每一個實線段和虛線段的長均為一個單位長度,一個動點M從O點出發(fā),按如圖所示的箭頭方向沿著實線段和以O(shè)為圓心的半圓勻速運動,速度為每秒1個單位長度,按此規(guī)律,則動點M到達(dá)A101點處所需時間為秒.

查看答案和解析>>

同步練習(xí)冊答案