如圖①所示,已知A,B為直線l上兩點,點C為直線l上方一動點,連接AC、BC,分別以AC、BC為直角邊向△ABC外作等腰直角△CAD和等腰直角△CBE,滿足∠CAD=∠CBE=90°,過點D作DD1⊥l于點D1,過點E作EE1⊥l于點E1
(1)如圖②,當點E恰好在直線l上時,試說明DD1=AB;
(2)在圖①中,當D,E兩點都在直線l的上方時,試探求三條線段DD1,EE1,AB之間的數(shù)量關(guān)系,并說明理由.

解:(1)∵△CAD、△CBE是等腰直角三角形,且∠CAD=∠CBE=90°,
∴AC=AD,BC=BE,
∴∠ABC=90°.∠DAD1+∠CAB=90°.
∵DD1⊥l,
∴∠DD1A=90°,
∴∠DD1A=∠ABC.
∵∠CAB+∠ACB=90°,
∴∠DAD1=∠ACB.
在△ADD1和△CAB中,
,
∴△ADD1≌△CAB(AAS),
∴DD1=AB;

(2)DD1,EE1,AB之間的數(shù)量關(guān)系是:DD1+EE1=AB
理由:過點C作CH⊥l于H,
由(1)得△DD1A≌△AHC,△CHB≌△EE1B,
∴AH=DD1,HB=EE1,
∴AH+HB=DD1+EE1,
即AB=DD1+EE1
分析:(1)由條件可以得出∠ABC=90°,∠DD1A=90°,根據(jù)等腰直角三角形的性質(zhì)就可以得出AD=AC,∠DAC=90°,就可以得出∠DAD1=∠ACB,從而得出△ADD1≌△CAB就可以得出結(jié)論;
(2)過點C作CH⊥l于H,通過證明△DD1A≌△AHC,△CHB≌△EE1B,就可以得出AH=DD1,HB=EE1,從而得出.
點評:本題考查了等腰直角三角形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,解答時運用三角形全等制造相等線段是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖9所示,已知:∠α、線段a,求作等腰三角形△ABC,使腰長AB=a,底角∠A=∠α.(要求寫出作法,并保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黃石)如圖1所示,已知直線y=kx+m與x軸、y軸分別交于點A、C兩點,拋物線y=-x2+bx+c經(jīng)過A、C兩點,點B是拋物線與x軸的另一個交點,當x=-
1
2
時,y取最大值
25
4

(1)求拋物線和直線的解析式;
(2)設(shè)點P是直線AC上一點,且S△ABP:S△BPC=1:3,求點P的坐標;
(3)直線y=
1
2
x+a與(1)中所求的拋物線交于點M、N,兩點,問:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由.
②猜想當∠MON>90°時,a的取值范圍.(不寫過程,直接寫結(jié)論)
(參考公式:在平面直角坐標系中,若M(x1,y1),N(x2,y2),則M、N兩點之間的距離為|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•義烏市)如圖1所示,已知y=
6
x
(x>0)圖象上一點P,PA⊥x軸于點A(a,0),點B坐標為(0,b)(b>0),動點M是y軸正半軸上B點上方的點,動點N在射線AP上,過點B作AB的垂線,交射線AP于點D,交直線MN于點Q連接AQ,取AQ的中點為C.
(1)如圖2,連接BP,求△PAB的面積;
(2)當點Q在線段BD上時,若四邊形BQNC是菱形,面積為2
3
,求此時P點的坐標;
(3)當點Q在射線BD上時,且a=3,b=1,若以點B,C,N,Q為頂點的四邊形是平行四邊形,求這個平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示為一上面無蓋的正方體紙盒,現(xiàn)將其剪開展成平面圖,如圖2精英家教網(wǎng)所示.已知展開圖中每個正方形的邊長為1.
(1)求在該展開圖中可畫出最長線段的長度這樣的線段可畫幾條?
(2)試比較立體圖中∠BAC與平面展開圖中∠B′A′C′的大小關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)試說明:△ABC≌△FED;
(2)若圖形經(jīng)過平移和旋轉(zhuǎn)后得到圖2,且有∠EDB=25°,∠A=66°,試求∠AMD的度數(shù);
(3)將圖形繼續(xù)旋轉(zhuǎn)后得到圖3,此時D,B,F(xiàn)三點在同一條直線上,若DB=2DF,連接EB,已知△EFB的面積為5cm2,你能求出四邊形ABED的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

同步練習(xí)冊答案