【題目】已知菱形的邊長(zhǎng)和一條對(duì)角線(xiàn)的長(zhǎng)均為2 cm,則菱形的面積為( )
A. 3cm2 B. 4 cm2 C. cm2 D. 2cm2
【答案】D
【解析】
由四邊形ABCD是菱形,可得菱形的四條邊都相等AB=BC=CD=AD,菱形的對(duì)角線(xiàn)互相平分且相等即AC⊥BD,OA=OC,OB=OD,又因?yàn)榱庑蔚倪呴L(zhǎng)和一條對(duì)角線(xiàn)的長(zhǎng)均為2,易求得OB=1,則可得AC的值,根據(jù)菱形的面積等于積的一半,即可求得菱形的面積.
解:根據(jù)題意畫(huà)出圖形,如圖所示:
∵四邊形ABCD是菱形,
∴AB=BC=CD=AD=2cm,AC⊥BD,OA=OC,OB=OD,
又∵菱形的邊長(zhǎng)和一條對(duì)角線(xiàn)的長(zhǎng)均為2,
∴AB=AD=BD=2,
∴OB=1,
∴OA==,
∴AC=2,
∴菱形的面積為2,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在線(xiàn)段AB上有一點(diǎn)C(點(diǎn)C不與A、B重合且AC>BC),分別以AC、BC為邊作正方形ACED和正方形BCFG,其中點(diǎn)F在邊CE上,連接AG.
(1)如圖1,若AC=7,BC=5,則AG=______;
(2)如圖2,若點(diǎn)C是線(xiàn)段AB的三等分點(diǎn),連接AE、EG,求證:△AEG是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,二次函數(shù)y=ax2﹣5x+c的圖象如圖.
(1)求這個(gè)二次函數(shù)的解析式和它的圖象的頂點(diǎn)坐標(biāo);
(2)觀(guān)察圖象,回答:何時(shí)y隨x的增大而增大;何時(shí)y隨x的增大而減。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小紅用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長(zhǎng)BC為10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在正方形ABCD中,G是CD上一點(diǎn),延長(zhǎng)BC到E,使CE=CG,連接BG并延長(zhǎng)交DE于F.
(1)求證:△BCG≌△DCE;
(2)將△DCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=x+2與x軸、y軸分別交于A、B兩點(diǎn),以A B為邊在第二象限內(nèi)作正方形ABCD.
(1)求點(diǎn)A、B的坐標(biāo),并求邊AB的長(zhǎng);
(2)求點(diǎn)D的坐標(biāo);
(3)在x軸上找一點(diǎn)M,使△MDB的周長(zhǎng)最小,請(qǐng)求出M點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com