【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),與y軸交于點C,且OC=OB.
(1)求此拋物線的解析式;
(2)若點E為第二象限拋物線上一動點,連接BE,CE,求四邊形BOCE面積的最大值,并求出此時點E的坐標;
(3)點P在拋物線的對稱軸上,若線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,求點P的坐標.
【答案】
(1)解:∵拋物線y=ax2+bx+c(a≠0)與x軸交于點A(1,0)和點B(﹣3,0),
∴OB=3,
∵OC=OB,
∴OC=3,
∴c=3,
∴ ,
解得: ,
∴所求拋物線解析式為:y=﹣x2﹣2x+3;
(2)解:如圖2,過點E作EF⊥x軸于點F,
設E(a,﹣a2﹣2a+3)(﹣3<a<0),
∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a,
∴S四邊形BOCE= BFEF+ (OC+EF)OF,
= (a+3)(﹣a2﹣2a+3)+ (﹣a2﹣2a+6)(﹣a),
=﹣ ﹣ a+ ,
=﹣ (a+ )2+ ,
∴當a=﹣ 時,S四邊形BOCE最大,且最大值為 .
此時,點E坐標為(﹣ , );
(3)解:∵拋物線y=﹣x2﹣2x+3的對稱軸為x=﹣1,點P在拋物線的對稱軸上,
∴設P(﹣1,m),
∵線段PA繞點P逆時針旋轉90°后,點A的對應點A′恰好也落在此拋物線上,
①當m≥0時,
∴PA=PA1,∠APA1=90°,
如圖3,過A1作A1N⊥對稱軸于N,
設對稱軸于x軸交于點M,
∴∠NPA1+∠MPA=∠NA1P+∠NPA1=90°,
∴∠NA1P=∠NPA,
在△A1NP與△PMA中,
,
∴△A1NP≌△PMA,
∴A1N=PM=m,PN=AM=2,
∴A1(m﹣1,m+2),
代入y=﹣x2﹣2x+3得:m+2=﹣(m﹣1)2﹣2(m﹣1)+3,
解得:m=1,m=﹣2(舍去),
②當m<0時,要使P2A=P2A,2,由圖可知A2點與B點重合,
∵∠AP2A2=90°,∴MP2=MA=2,
∴P2(﹣1,﹣2),
∴滿足條件的點P的坐標為P(﹣1,1)或(﹣1,﹣2).
【解析】(1)已知拋物線過A、B兩點,可將兩點的坐標代入拋物線的解析式中,用待定系數法即可求出二次函數的解析式;(2)由于四邊形BOCE不是規(guī)則的四邊形,因此可將四邊形BOCE分割成規(guī)則的圖形進行計算,過E作EF⊥x軸于F,四邊形BOCE的面積=三角形BFE的面積+直角梯形FOCE的面積.直角梯形FOCE中,FO為E的橫坐標的絕對值,EF為E的縱坐標,已知C的縱坐標,就知道了OC的長.在三角形BFE中,F=BO﹣OF,因此可用E的橫坐標表示出BF的長.如果根據拋物線設出E的坐標,然后代入上面的線段中,即可得出關于四邊形BOCE的面積與E的橫坐標的函數關系式,根據函數的性質即可求得四邊形BOCE的最大值及對應的E的橫坐標的值.即可求出此時E的坐標;(3)由P在拋物線的對稱軸上,設出P坐標為(﹣1,m),如圖所示,過A′作A′N⊥對稱軸于N,由旋轉的性質得到一對邊相等,再由同角的余角相等得到一對角相等,根據一對直角相等,利用AAS得到△A′NP≌△PMA,由全等三角形的對應邊相等得到A′N=PM=|m|,PN=AM=2,表示出A′坐標,將A′坐標代入拋物線解析式中求出相應m的值,即可確定出P的坐標.
科目:初中數學 來源: 題型:
【題目】已知,如圖,AB是⊙O的直徑,C為⊙O上一點,AD垂直于經過點C的直線DE,垂足為點D,AC平分∠DAB.
(1)求證:直線DE是⊙O的切線;
(2)連接BC,猜想:∠ECB與∠CAB的數量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:∠AOB和兩點C、D,求作一點P,使PC=PD,且點P到∠AOB的兩邊的距離相等.
(要求:用尺規(guī)作圖,保留作圖痕跡,寫出作法,不要求證明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的方程x2﹣2(k+1)x+k2=0有兩個實數根x1、x2 .
(1)求k的取值范圍;
(2)若x1+x2=3x1x2﹣6,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l1∥l2∥l3 , 一等腰直角三角形ABC的三個頂點A,B,C分別在l1 , l2 , l3上,∠ACB=90°,AC交l2于點D,已知l1與l2的距離為1,l2與l3的距離為3,則 的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校舉行全體學生“漢字聽寫”比賽,每位學生聽寫漢字39個.隨機抽取了部分學生的聽寫結果,繪制成如下的統(tǒng)計圖表(表1,圖8.1,圖8.2).
根據以上信息完成下列問題:
(1)統(tǒng)計表中的m= ,n= ;
(2)補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中“E”類所對應的圓心角是 度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,O為坐標原點.直線y=kx+b與拋物線y=mx2﹣ x+n同時經過A(0,3)、B(4,0).
(1)求m,n的值.
(2)點M是二次函數圖象上一點,(點M在AB下方),過M作MN⊥x軸,與AB交于點N,與x軸交于點Q.求MN的最大值.
(3)在(2)的條件下,是否存在點N,使△AOB和△NOQ相似?若存在,求出N點坐標,不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com