【題目】探究題

如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠A OB﹦1100,∠BOC﹦a,將△BOC繞點(diǎn)C按順時(shí)鐘方向旋轉(zhuǎn)60O得△ADC,連接OD.

(1)求證:△COD是等邊三角形;

(2)當(dāng)a﹦150O時(shí),試判斷△AOD的形狀,并說(shuō)明理由;

(3)探究:當(dāng)僅為多少度時(shí),△AOD是等腰三角形?

【答案】(1)等邊三角形;(2)直角三角形;(3)當(dāng)的度數(shù)為時(shí),△AOD是等腰三角形.

【解析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出OC=OD,結(jié)合題意即可證得結(jié)論;

(2)結(jié)合(1)的結(jié)論可作出判斷;

(3)找到變化中的不變量,然后利用旋轉(zhuǎn)及全等的性質(zhì)即可做出解答.

(1)證明:∵將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC

CO=CD,∠OCD=60°

∴△COD是等邊三角形.

(2)解:當(dāng)=150°時(shí),△AOD是直角三角形

理由是:∵△BOC≌△ADC

∴∠ADC=∠BOC=150°

又∵△COD是等邊三角形

∴∠ODC=60°[來(lái)

∴∠ADO=∠ADC -∠ODC=90°,即△AOD是直角三角形.

(3)解:①要使AO=AD,需∠AOD=∠ADO

∵∠AOD= = ,∠ADO=

=

②要使OA=OD,需∠OAD=∠ADO

∵∠OAD=(∠AOD+∠ADO)==

=

③要使DO=DA,需∠OAD=∠AOD.

∵∠AOD= = ,∠OAD==,解得

綜上所述:當(dāng)的度數(shù)為時(shí),△AOD是等腰三角形.

“點(diǎn)睛”本題以“空間與圖形”中的核心知識(shí)(如等邊三角形)的性質(zhì)、全等三角形的性質(zhì)與證明、直角三角形的判定、多邊形內(nèi)角和等)為載體,內(nèi)容由淺入深,層層遞進(jìn),試題中幾何演繹推理的難度適中,蘊(yùn)含著豐富的思想方法(如運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類(lèi)討論、方程思想等)能較好地考查學(xué)生的推理、探究及解決問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】3個(gè)長(zhǎng)為a,寬為b(a>b)的長(zhǎng)方形如圖放置,恰好拼成一個(gè)大長(zhǎng)方形,

(1)大長(zhǎng)方形的面積S=____________(用含字母a、b的代數(shù)式表示);

(2)a、b之間的等量關(guān)系是:__________________;

(3)當(dāng)b=2時(shí),面積S=?b=3時(shí),周長(zhǎng)C=?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)系式中,變量x=-1時(shí),變量y=6的是( )

A. y=3x+3B. y=-3x+3C. y=3x–3D. y=-3x–3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在我市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天;若由甲隊(duì)先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?

(2)甲隊(duì)施工一天,需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元.若該工程計(jì)劃在70天內(nèi)完成,在不超過(guò)計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢(qián)?還是由甲乙兩隊(duì)全程合作完成該工程省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式2x﹣4≥0的解集是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解一元二次方程x2﹣6x﹣4=0,下列變形正確的是(
A.(x﹣6)2=﹣4+36
B.(x﹣6)2=4+36
C.(x﹣3)2=﹣4+9
D.(x﹣3)2=4+9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)二次函數(shù)y=(x﹣3)2﹣4圖象的對(duì)稱(chēng)軸為直線l,若點(diǎn)M在直線l上,則點(diǎn)M的坐標(biāo)可能是(
A.(1,0)
B.(3,0)
C.(﹣3,0)
D.(0,﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表記錄了一次實(shí)驗(yàn)中的時(shí)間和溫度的數(shù)據(jù),寫(xiě)出Tt的關(guān)系式____

時(shí)間t(分)

0

5

10

15

20

25

溫度T(℃)

10

25

40

55

70

85

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】多項(xiàng)式3x25x+2 次三項(xiàng)式,一次項(xiàng)系數(shù) ,常數(shù)項(xiàng)是 。

查看答案和解析>>

同步練習(xí)冊(cè)答案