【題目】如圖,已知, .
(1)用直尺和圓規(guī)作出一條過點的直線,使得點關于直線的對稱點落在邊上(不寫作法,保留作圖痕跡).
(2)設直線與邊的交點為,且,請你通過觀察或測量,猜想線段之間的數(shù)量關系,并說明理由.
【答案】(1)作圖見解析.( 2 ) ,理由見解析.
【解析】試題分析:(1)先作∠BAC的平分線l,再過點C作CF⊥l交AB于F,則可得到點C和F點關于l對稱,所以l為所作;
(2)連結DF,如圖,利用等腰三角形的判定方法得到AF=AC,則AD垂直平分CF,所以DF=DC,則∠DCF=∠DFC,再利用三角形外角性質得∠BDF=2∠DCF,接著證明∠B=2∠BCF,于是得到∠B=∠BDF,則FB=FD=CD,則易得AB=AF+FB=AC+CD.
試題解析:(1)如圖,直線l為所作;
(2)AB=AC+CD.理由如下:
連結DF,如圖,
∵AD平分∠BAC,AD⊥CF,
∴AF=AC,
∴AD垂直平分CF,
∴DF=DC,
∴∠DCF=∠DFC,
∴∠BDF=∠DCF+∠DFC=2∠DCF,
∵∠AFC=∠ACF,
∵∠AFC=∠B+∠BCF,
∴∠ACF=∠B+∠BCF,
∵∠ACB=2∠B,
∴2∠B-∠BCF=∠B+∠BCF,
∴∠B=2∠BCF,
∴∠B=∠BDF,
∴FB=FD,
∴FB=CD,
∴AB=AF+FB=AC+CD.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 過一點有且只有一條直線與已知直線平行.
B. 在同一平面內,過一點有且只有一條直線與已知直線垂直.
C. 有公共頂點且有一條公共邊的兩個角互為鄰補角.
D. 相等的兩個角是對頂角.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,點E在對角線AC上,EC=BC=DC.
(1)若∠CBD=40°,求∠BAD的度數(shù);
(2)求證:∠1=∠2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=12,AC=10,BC=9,AD是BC邊上的高.將△ABC按如圖所示的方式折疊,使點A與點D重合,折痕為EF,則△DEF的周長為( )
A. 9.5 B. 10.5 C. 11 D. 15.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(1,6),B(a,2)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)直接寫出≥時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】給出下列命題:
(1)兩條直線被第三條直線所截,同位角相等;
(2)相等的角是對頂角;
(3)同一平面內,一條直線和兩條平行線中的一條相交,則它與另一條也相交;
(4)從直線外一點到這條直線的垂線段,叫做該點到直線的距離;
(5)不相交的兩條直線叫做平行線.
其中真命題的個數(shù)是( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是BC邊上的一點,以E為圓心,EC為半徑的半圓與以A為圓心AB為半徑的圓弧相外切于點F,若AB=4,
(1)求半圓E的半徑r的長;
(2)求四邊形ADCE的面積;
(3)連接DB、DF,設∠BDF=α,∠AEC=β,求證:β-2α=90°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“地球停電一小時”活動的某地區(qū)燭光晚餐中,設座位有 x 排,每排坐 30 人,則有 8 人無座位;每排坐 31 人,則空 26 個座位.則下列方程正確的是( )
A.30x﹣8=31x﹣26
B.30x + 8=31x+26
C.30x + 8=31x﹣26
D.30x﹣8=31x+26
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com