【題目】正方形ABCD中,點(diǎn)E、F分別在CD、BC邊上,是等邊三角形.以下結(jié)論:①;②;③;④EF的垂直平分線是直線AC.正確結(jié)論個(gè)數(shù)有( )個(gè).
A.1B.2C.3D.4
【答案】C
【解析】
由題意可證△ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定義可求∠AED=75°,由AE=AF,EC=FC可證AC垂直平分EF,則可判斷各命題是否正確.
解:∵四邊形ABCD是正方形,
∴AB=AD=BC=CD,∠B=∠C=∠D=∠DAB=90°,
∵△AEF是等邊三角形,
∴AE=AF=EF,∠EAF=∠AEF=60°,
∵AD=AB,AF=AE,
∴△ABF≌△ADE,
∴BF=DE,
∴BCBF=CDDE,
∴CE=CF,故①正確;
∵CE=CF,∠C=90°;
∴EF=CE,∠CEF=45°;
∴AF=CE,
∴CF=AF,故③錯(cuò)誤;
∵∠AED=180°∠CEF∠AEF;
∴∠AED=75°;故②正確;
∵AE=AF,CE=CF;
∴AC垂直平分EF;故④正確.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)0為直線AB上一點(diǎn),∠AOC=50,OD平分∠AOC,∠DOE=90.
(1)請(qǐng)你數(shù)一數(shù),圖中有多少個(gè)小于平角的角:
(2)求出∠BOD的度數(shù);
(3)試判斷OE是否平分∠BOC,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題.
(1)寫出方程ax2+bx+c=0的兩個(gè)根;
(2)寫出不等式ax2+bx+c>0的解集;
(3)寫出y隨x的增大而減小的自變量x的取值范圍;
(4)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),公路上有A、B、C三個(gè)車站,一輛汽車從A站以速度v1勻速駛向B站,到達(dá)B站后不停留,以速度v2勻速駛向C站,汽車行駛路程y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖(2)所示.
(1)當(dāng)汽車在A、B兩站之間勻速行駛時(shí),求y與x之間的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求出v2的值;
(3)若汽車在某一段路程內(nèi)剛好用50分鐘行駛了90千米,求這段路程開始時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一貨輪在C處測得燈塔A在貨輪的北偏西30的方向上,隨后貨輪以80海里/時(shí)的速度按北偏東30°的方向航行,半小時(shí)后到達(dá)B處,此時(shí)又測得燈塔A在貨輪的北偏西75°的方向上,求此時(shí)貨輪距燈塔A的距離AB(結(jié)果保留3個(gè)有效數(shù)字, ≈2.449).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)由正奇數(shù)排成的數(shù)陣.用如圖所示的四邊形框去框住四個(gè)數(shù).
(1)若設(shè)框住四個(gè)數(shù)中左上角的數(shù)為n,則這四個(gè)數(shù)的和為 (用n的代數(shù)式表示);
(2)平行移動(dòng)四邊形框,若框住四個(gè)數(shù)的和為228,求出這4個(gè)數(shù);
(3)平行移動(dòng)四邊形框,能否使框住四個(gè)數(shù)的和為508?若能,求出這4個(gè)數(shù);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=4x2﹣2ax+b與x軸相交于A(x1,0),B(x2,0)(0<x1<x2)兩點(diǎn).
(1)若點(diǎn)A(0.5,0)和點(diǎn)B(1.5,0),求拋物線的表達(dá)式;
(2)三角形的內(nèi)心是________的交點(diǎn).在(1)的條件下,拋物線與y軸交于點(diǎn)C,點(diǎn)D在x軸上,且坐標(biāo)為(-3,0),直線l經(jīng)過點(diǎn)C、D.在拋物線上是否存在一點(diǎn)P,使△DCP的內(nèi)心在y軸上,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)是否存在整數(shù)a,b,使得1<x1<2和1<x2<2同時(shí)成立?證明你的結(jié)論.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長為( 。
A. B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動(dòng)
問題情境:
如圖1,在ABC中,AB=AC,∠BAC=90°,D,E分別是邊AB,AC的中點(diǎn),將ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°)得到AD′E′,連接CE′,BD′.探究CE′與BD′的數(shù)量關(guān)系;
圖1 圖2 圖3 圖4
探究發(fā)現(xiàn):
(1)圖1中,CE′與BD′的數(shù)量關(guān)系是________;
(2)如圖2,若將問題中的條件“D,E分別是邊AB,AC的中點(diǎn)”改為“D為AB邊上任意一點(diǎn),DE∥BC交AC于點(diǎn)E”,其他條件不變,(1)中CE′與BD′的數(shù)量關(guān)系還成立嗎?請(qǐng)說明理由;
拓展延伸:
(3)如圖3,在(2)的條件下,連接BE′,CD′,分別取BC,CD′,E′D′,BE′的中點(diǎn)F,G,H,I,順次連接F,G,H,I得到四邊形FGHI.請(qǐng)判斷四邊形FGHI的形狀,并說明理由;
(4)如圖4,在ABC中,AB=AC,∠BAC=60°,點(diǎn)D,E分別在AB,AC上,且DE∥BC,將ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°得到AD′E′,連接CE′,BD′.請(qǐng)你仔細(xì)觀察,提出一個(gè)你最關(guān)心的數(shù)學(xué)問題(例如:CE′與BD′相等嗎?).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com