【題目】已知:∠AOB

求作:∠A'O'B',使∠A'O'B'=AOB

作法:①以O為圓心,任意長(zhǎng)為半徑畫(huà)弧,分別交OAOB于點(diǎn)C,D

②畫(huà)一條射線O'A',以點(diǎn)O'為圓心,OC長(zhǎng)為半徑面弧,交O'A'于點(diǎn)C

③以點(diǎn)C'為圓心,CD長(zhǎng)為半徑畫(huà)弧,與第②步中所畫(huà)的弧相交于點(diǎn)D';

④過(guò)點(diǎn)D'畫(huà)射線O'B,則∠A'O'B'=AOB

根據(jù)上面的作法,完成以下問(wèn)題:

(1)使用直尺和圓規(guī),作出∠A'O'B'(請(qǐng)保留作圖痕跡)

(2)完成下面證明∠A'O'B'=AOB的過(guò)程(注:括號(hào)里填寫(xiě)推理的依據(jù))

證明:由作法可知O'C'=OC,O'D'=OD,D'C'=_________

∴△C'O'D'≌△COD(________)

∴∠A'O'B'=AOB(________)

【答案】1)見(jiàn)詳解(2DCSSS;全等三角形的對(duì)應(yīng)角相等.

【解析】

1)根據(jù)上面做法即可作圖;

2)根據(jù)全等三角形的判定定理及性質(zhì)定理即可得出.

1)如圖所示, 即為所求.

2)證明:

由作法可知O'C'=OC,O'D'=ODD'C=DC

∴△C'O'D'≌△COD(SSS);

∴∠A'O'B'=AOB(全等三角形的對(duì)應(yīng)角相等)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績(jī)?nèi)鐖D所示.

根據(jù)圖示填寫(xiě)下表:

平均數(shù)

中位數(shù)

眾數(shù)

A

______

85

______

B

85

______

100

結(jié)合兩校成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績(jī)較好;

計(jì)算兩校決賽成績(jī)的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績(jī)較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABDE、CDFI、EFGH的面積分別為25、9、16,△AEH、△BDC、△GFI的面積分別為S1、S2、S3,則S1+S2+S3=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點(diǎn),

1)求證:BC=DE;

2)連接ADBE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)D從點(diǎn)A出發(fā)以1cm/s的速度運(yùn)動(dòng)到點(diǎn)C停止.作DEAC交邊ABBC于點(diǎn)E,以DE為邊向右作正方形DEFG.設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t(s).

(1)求AC的長(zhǎng).

(2)請(qǐng)用含t的代數(shù)式表示線段DE的長(zhǎng).

(3)當(dāng)點(diǎn)F在邊BC上時(shí),求t的值.

(4)設(shè)正方形DEFGABC重疊部分圖形的面積為S(cm2),當(dāng)重疊部分圖形為四邊形時(shí),求St之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A(1,4),B(a,b),其中a>1.過(guò)點(diǎn)Ax軸垂線,垂足為C,過(guò)點(diǎn)By軸垂線,垂足為D,ACBD交于點(diǎn)E,連接AD,DC,CB.

(1)求k的值;

(2)求證:DCAB;

(3)當(dāng)ADBC時(shí),求直線AB的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為半圓O的在直徑,ADBC分別切⊙OA、B兩點(diǎn),CD⊙O于點(diǎn)E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,④ODOC=DEEC,,正確的有( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家電商場(chǎng)計(jì)劃用9萬(wàn)元從生產(chǎn)廠家購(gòu)進(jìn)50臺(tái)電視機(jī),已知該廠家生產(chǎn)3種不同型號(hào)的電視機(jī),出廠價(jià)分別為A種每臺(tái)1500元,B種每臺(tái)2100元,C種每臺(tái)2500元.

1)若家電商場(chǎng)同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的電視機(jī)共50臺(tái),用去9萬(wàn)元,請(qǐng)你計(jì)算一下商場(chǎng)有哪幾種進(jìn)貨方案?

2)若商場(chǎng)銷售一臺(tái)A種電視機(jī)可獲利150元,銷售一臺(tái)B種電視機(jī)可獲利200元,銷售一臺(tái)C種電視機(jī)可獲利250元,在同時(shí)購(gòu)進(jìn)兩種不同型號(hào)的電視機(jī)方案中,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是二次函數(shù)y=ax2+bx+c的圖象.下列結(jié)論:①二次三項(xiàng)式ax2+bx+c的最大值為4;②使y≤3成立的x的取值范圍是x≤-2;③一元二次方程ax2+bx+c=1的兩根之和為-1;④該拋物線的對(duì)稱軸是直線x=-1;4a-2b+c<0.其中正確的結(jié)論有______________.(把所有正確結(jié)論的序號(hào)都填在橫線上)

查看答案和解析>>

同步練習(xí)冊(cè)答案