【題目】如圖,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉一定角度后得△EDC,點D在AB邊上,斜邊DE交AC于點F,則圖中陰影部分面積為 .
【答案】
【解析】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2, ∴∠B=60°,AB=2BC=4,AC=2 ,
∵△EDC是△ABC旋轉而成,
∴BC=CD=BD= AB=2,
∵∠B=60°,
∴△BCD是等邊三角形,
∴∠BCD=60°,
∴∠DCF=30°,∠DFC=90°,
即DE⊥AC,
∴DE∥BC,
∵BD= AB=2,
∴DF是△ABC的中位線,
∴DF= BC= ×2=1,CF= AC= ×2 = ,∴S陰影= DF×CF= × = .
先根據已知條件求出AC的長及∠B的度數(shù),再根據圖形旋轉的性質及等邊三角形的判定定理判斷出△BCD的形狀,進而得出∠DCF的度數(shù),由直角三角形的性質可判斷出DF是△ABC的中位線,由三角形的面積公式即可得出結論.
科目:初中數(shù)學 來源: 題型:
【題目】為了了解家長關注孩子成長方面的狀況,學校開展了針對學生家長的“您最關心孩子哪方面成長”的主題調查,調查設置了“健康安全”、“日常學習”、“習慣養(yǎng)成”、“情感品質”四個項目,并隨機抽取甲、乙兩班共100位學生家長進行調查,根據調查結果,繪制了如圖不完整的條形統(tǒng)計圖.
(1)補全條形統(tǒng)計圖.
(2)若全校共有3600位學生家長,據此估計,有多少位家長最關心孩子“情感品質”方面的成長?
(3)綜合以上主題調查結果,結合自身現(xiàn)狀,你更希望得到以上四個項目中哪方面的關注和指導?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課間小明和小亮玩“剪刀、石頭、布”游戲.游戲規(guī)則是:雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢中的一種,石頭勝剪刀,剪刀勝布,布勝石頭,若雙方出現(xiàn)相同手勢,則算打平.若小亮和小明兩人只比賽一局.
(1)請用樹狀圖或列表法列出游戲的所有可能結果.
(2)求出雙方打平的概率.
(3)游戲公平嗎?如果不公平,你認為對誰有利?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),對稱軸為直線x=﹣1,給出四個結論:
①b2>4ac;②2a+b=0;③a+b+c>0;④若點B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點,則y1<y2 ,
其中正確結論是( 。
A.②④
B.①④
C.①③
D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學活動小組要測量樓AB的高度,樓AB在太陽光的照射下在水平面的影長BC為6米,在斜坡CE的影長CD為13米,身高1.5米的小紅在水平面上的影長為1.35米,斜坡CE的坡度為1:2.4,求樓AB的高度.(坡度為鉛直高度與水平寬度的比)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC= AB;
(3)點M是 的中點,CM交AB于點N,若AB=4,求MNMC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與反比例函數(shù)y= k x 的圖象交于A、B兩點,過點A作AC垂直x軸于點C,連結BC.若△ABC的面積為2.
(1)求k的值;
(2)利用圖象求出不等式2x> 的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,AD=AC,AD⊥AC,E是AB的中點,F(xiàn)是AC延長線上一點.
(1)若ED⊥EF,求證:ED=EF;
(2)在(1)的條件下,若DC的延長線與FB交于點P,試判定四邊形ACPE是否為平行四邊形?并證明你的結論(請先補全圖形,再解答);
(3)若ED=EF,ED與EF垂直嗎?若垂直給出證明.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com