【題目】如圖,在△ABC中,∠B=90°,AB=6cm,BC=8cm,點P從A點出發(fā)沿AB邊向B以1cm/s的速度移動,點Q從B點出發(fā)沿BC向C點以2cm/s的速度移動,當其中一個點到達終點時兩個點同時停止運動,在兩個點運動過程中,請回答:
(1)經過多少時間,△PBQ的面積是5cm2?
(2)請你利用配方法,求出經過多少時間,四邊形APQC面積最?并求出這個最小值.
【答案】(1)經過1秒,能使△PBQ的面積等于5cm2;(2)經過3秒時,四邊形APQC面積最小,最小值為15 cm2.
【解析】
(1)設運動時間為t秒,根據題意表示出BP、BQ的長,再根據三角形的面積公式列方程即可;
(2)根據四邊形APQC面積=△ABC的面積-△PBQ的面積,求出表示四邊形APQC面積的式子,再配方,然后根據二次函數的性質即可求解.
(1)設運動時間為t秒,8÷2=4,則0≤t≤4,根據題意得:
PBBQ=5,
即(6﹣t)2t=5,
t2﹣6t+5=0,
解得t1=1,t2=5(不符合題意,舍去),
所以t=1.
故經過1秒,能使△PBQ的面積等于5cm2;
(2)設運動時間為t秒,根據題意得:
∵S四邊形APQC=,
∴當t=3秒時,S四邊形APQC的最小值為15 cm2.
科目:初中數學 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(圖4).把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司為了到高校招聘大學生,為此設置了三項測試:筆試、面試、實習.學生的最終成績由筆試面試、實習依次按3:2:5的比例確定.公司初選了若干名大學生參加筆試,面試,并對他們的兩項成績分別進行了整理和分析.下面給出了部分信息:
①公司將筆試成績(百分制)分成了四組,分別為A組:60≤x<70,B組:70≤x<80,C組:80≤x<90,D組:90≤x<100;并繪制了如下的筆試成績頻數分布直方圖.其中,C組的分數由低到高依次為:80,81,82,83,83,84,84,85,86,88,88,88,89.
②這些大學生的筆試、面試成績的平均數、中位數、眾數、最高分如下表:
平均數 | 中位數 | 眾數 | 最高分 | |
筆試成績 | 81 | m | 92 | 97 |
面試成績 | 80.5 | 84 | 86 | 92 |
根據以上信息,回答下列問題:
(1)這批大學生中筆試成績不低于88分的人數所占百分比為 .
(2)m= 分,若甲同學參加了本次招聘,他的筆試、面試成績都是83分,那么該同學成績排名靠前的是 成績,理由是 .
(3)乙同學也參加了本次招聘,筆試成績雖不是最高分,但也不錯,分數在D組;面試成績?yōu)?/span>88分,實習成績?yōu)?/span>80分由表格中的統計數據可知乙同學的筆試成績?yōu)?/span> 分;若該公司最終錄用的最低分數線為86分,請通過計算說明,該同學最終能否被錄用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形OABC是矩形,點A坐標為(2,0),點C坐標為(0,4).點P從點O出發(fā),沿OA以每秒1個單位長度的速度向點A運動,同時點Q從點A出發(fā),沿AB以每秒2個單位長度的速度向點B運動,當點P與點A重合時運動停止.設運動時間為t秒.
(1)當△CBQ與△PAQ相似時,求出t的值;
(2)當t=1時,拋物線y=2x2+bx+c經過P,Q兩點,與y軸交于點M,在該拋物線上找點D,使∠MQD=∠MPQ,求點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數y=ax2+bx+3的圖象經過點A(3,0)和點B(4,3).
(1)求二次函數的表達式;
(2)求二次函數圖象的頂點坐標和對稱軸.
(3)直接畫出函數的圖象(不列表).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(x>0)與正比例函數y=kx、 (k>1)的圖象分別交于點A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
(1)求拋物線的解析式;
(2)判斷△ABC的形狀,證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A,B分別在函數y=(k1>0)與函數y=(k2<0)的圖象上,線段AB的中點M在x軸上,△AOB的面積為4,則k1﹣k2的值為( 。
A.2B.4C.6D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=x2+2x+a﹣3,當a=0時,拋物線與y軸交于點A,將點A向左平移4個單位長度,得到點B.
(1)求點B的坐標;
(2)拋物線與直線y=a交于M、N兩點,將拋物線在直線y=a下方的部分沿直線y=a翻折,圖象的其他部分保持不變,得到一個新的圖象,即為圖形M.
①求線段MN的長;
②若圖形M與線段AB恰有兩個公共點,結合函數圖象,直接寫出a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com