【題目】某學校開展以素質(zhì)提升為主題的研學活動,推出了以下四個項目供學生選擇:A.模擬駕駛;B.軍事競技;C.家鄉(xiāng)導游;D.植物識別.學校規(guī)定:每個學生都必須報名且只能選擇其中一個項目.八年級(3)班班主任劉老師對全班學生選擇的項目情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖中的信息,解決下列問題:
(1)八年級(3)班學生總?cè)藬?shù)是 ,并將條形統(tǒng)計圖補充完整;
(2)劉老師發(fā)現(xiàn)報名參加“植物識別”的學生中恰好有兩名男生,現(xiàn)準備從這些學生中任意挑選兩名擔任活動記錄員,請用列表或畫樹狀圖的方法,求恰好選中1名男生和1名女生擔任活動記錄員的概率.
【答案】(1)40人,補圖見解析;(2)
【解析】
(1)利用A項目的頻數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),然后計算出C項目的人數(shù)后補全條形統(tǒng)計圖;
(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好選中1名男生和1名女生擔任活動記錄員的結(jié)果數(shù),然后利用概率公式求解.
(1)調(diào)查的總?cè)藬?shù)為12÷30%=40(人),
所以C項目的人數(shù)為40-12-14-4=10(人)
條形統(tǒng)計圖補充為:
故答案為40人;
(2)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中恰好選中1名男生和1名女生擔任活動記錄員的結(jié)果數(shù)為8,
所以恰好選中1名男生和1名女生擔任活動記錄員的概率=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+與x軸交于點A(﹣5,0),B(1,0),頂點為D,與y軸交于點C.
(1)求拋物線的表達式及D點坐標;
(2)在直線AC上方的拋物線上是否存在點E,使得∠ECA=2∠CAB,如果存在這樣的點E,求出△ACE面積,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等邊△ABC中,點D,E分別在邊AB,AC上,AD=AE,連接BE,CD,點F,G,H分別是BE,CD,BC的中點
(1)觀察猜想:圖1中,△FGH的形狀是______.
(2)探究證明:把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,△FGH的形狀是否發(fā)生改變?并說明理由;
(3)拓展延伸:把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=2,AB=6,請直接寫出△FGH的周長的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(問題背景)先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式x2﹣4>0
(問題解決)∵x2﹣4=(x+2)(x﹣2)
∴x2﹣4>0可化為(x+2)(x﹣2)>0
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,得
解不等式組①,得x>2,
解不等式組②,得x<﹣2,
∴(x+2)(x﹣2)>0的解集為x>2或x<﹣2,
即一元二次不等式 x2﹣4>0 的解集為x>2或x<﹣2.
(問題應用)(1)一元二次不等式 x2﹣16>0 的解集為 ;
(2)分式不等式>0 的解集為 ;
(3)(拓展應用)解一元二次不等式 2x2﹣3x<0.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車票收入支出費 用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費用,提高車票價格;建議(Ⅱ)不改變車票價格,減少支出費用.下面給出的四個圖形中,實線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則下列說法正確的是:
A. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)
C. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是
A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上
B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上
C. 大量反復拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50次
D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:
①abc<0;②b>2a;③a+b+c=0;④8a+c>0;⑤ax2+bx+c=0的兩根分別為﹣3和1.
其中正確的命題有( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB的長為2,點C在圓周上,∠CAB=30°,點D是圓上一動點,DE∥AB交CA的延長線于點E,連接CD,交AB于點F.
(1)如圖1,當∠ACD=45°時,求證:DE是⊙O的切線;
(2)如圖2,當點F是CD的中點時,求△CDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com