【題目】如圖,RtABC中,∠C90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC3,OC6,則另一直角邊BC的長為_____

【答案】9

【解析】

OOFBC,過AAMOF,根據(jù)正方形的性質得出∠AOB=90°,OA=OB,求出∠BOF=OAM,根據(jù)AASAOM≌△BOF,推出AM=OFOM=FB,求出四邊形ACFM為矩形,推出AM=CFAC=MF=3,得出等腰三角形三角形OCF,根據(jù)勾股定理求出CF=OF=6,求出BF,即可求出答案.

解:過OOFBCF,過AAMOFM

∵∠ACB90°,

∴∠AMO=∠OFB90°,∠ACB=∠CFM=∠AMF90°,

∴四邊形ACFM是矩形,

AMCF,ACMF3

∵四邊形ABDE為正方形,

∴∠AOB90°,OAOB,

∴∠AOM+BOF90°

又∵∠AMO90°,

∴∠AOM+OAM90°,

∴∠BOF=∠OAM,

AOMOBF,

∴△AOM≌△OBFAAS),

AMOF,OMFB

OFCF,

∵∠CFO90°,

∴△CFO是等腰直角三角形,

OC6,由勾股定理得:CFOF6

BFOMOFFM633,

BC6+39

故答案為:9

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】等腰△ABC的直角邊AB=BC=10cm,點PQ分別從A、C兩點同時出發(fā),均以1cm/秒的相同速度作直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設P點運動時間為t,△PCQ的面積為S

1)求出S關于t的函數(shù)關系式;

2)當點P運動幾秒時,SPCQ=SABC?

3)作PE⊥AC于點E,當點PQ運動時,線段DE的長度是否改變?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=ax-a為拋物線y=ax2+bx+cab、c為常數(shù),a≠0)的衍生直線;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其衍生三角形.已知拋物線與其衍生直線交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C

1)填空:該拋物線的衍生直線的解析式為 ,點A的坐標為 ,點B的坐標為

2)如圖,點M為線段CB上一動點,將ACMAM所在直線為對稱軸翻折,點C的對稱點為N,若AMN為該拋物線的衍生三角形,求點N的坐標;

3)當點E在拋物線的對稱軸上運動時,在該拋物線的衍生直線上,是否存在點F,使得以點A、C、EF為頂點的四邊形為平行四邊形?若存在,請直接寫出點EF的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點A(﹣1,0),B3,0),C0,3)三點.

1)求拋物線的解析式;

2)點M是線段BC上的點(不與BC重合),過MNMy軸交拋物線于N,若點M的橫坐標為m,請用含m的代數(shù)式表示MN的長;

3)在(2)的條件下,連接NB,NC,是否存在點m,使△BNC的面積最大?若存在,求m的值和△BNC的面積;若不存在,說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+cx軸交于B,C兩點,與y軸交于點A,直線y=﹣x+2經(jīng)過AC兩點,拋物線的對稱軸與x軸交于點D,直線MN與對稱軸交于點G,與拋物線交于MN兩點(點N在對稱軸右側),且MNx軸,MN7

1)求此拋物線的解析式.

2)求點N的坐標.

3)過點A的直線與拋物線交于點F,當tanFAC時,求點F的坐標.

4)過點D作直線AC的垂線,交AC于點H,交y軸于點K,連接CN,△AHK沿射線AC以每秒1個單位長度的速度移動,移動過程中△AHK與四邊形DGNC產(chǎn)生重疊,設重疊面積為S,移動時間為t0t),請直接寫出St的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線yx交于點M,∠AMB90°,其兩邊分別與兩坐標軸的正半軸交于點A、B,四邊形OAMB的面積為6

1)求k的值;

2)點P在(1)的反比例函數(shù)yx0)的圖象上,若點P的橫坐標為3,在x軸上有一點D4,0),若在直線yx上有動點C,構成PDC,其面積為3,請寫出C點的坐標;

3)若∠EPF90°,其兩邊分別為與x軸正半軸,直線yx交于點EF,問是否存在點E,使PEPF?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據(jù)以往經(jīng)驗:當銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.

1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關系式及自變量的取值范圍.

2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市努力改善空氣質量,近年來空氣質量明顯好轉,根據(jù)該市環(huán)境保護局公布的2010﹣2014這五年各年全年空氣質量優(yōu)良的天數(shù)如表所示,根據(jù)表中信息回答:

2010

2011

2012

2013

2014

234

233

245

247

256

(1)這五年的全年空氣質量優(yōu)良天數(shù)的中位數(shù)是________,平均數(shù)是________;

(2)這五年的全年空氣質量優(yōu)良天數(shù)與它前一年相比增加最多的是________年(填寫年份);

(3)求這五年的全年空氣質量優(yōu)良天數(shù)的方差________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB4,BC8,將紙片沿EF折疊,使點C與點A重合,則下列結論錯誤的是( )

A. AFAE B. ABE≌△AGF C. EF D. AFEF

查看答案和解析>>

同步練習冊答案