【題目】某體育用品店購(gòu)進(jìn)一批單件為40元的球服,如果按單價(jià)60元銷售樣,那么一個(gè)月內(nèi)可售出240套,根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會(huì)導(dǎo)致銷售量的減少,即銷售單價(jià)每提高5元,銷售量相應(yīng)減少20套.設(shè)銷售單價(jià)為x(x≥60)元,銷售量為y套.
(1)求出y與x的函數(shù)關(guān)系式;
(2)當(dāng)銷售單件為多少元時(shí),月銷售額為14000元?
(3)當(dāng)銷售單價(jià)為多少元時(shí),才能在一個(gè)月內(nèi)獲得最大利潤(rùn)?最大利潤(rùn)是多少?
【答案】
(1)解:銷售單價(jià)為x元,則銷售量減少 ×20,
故銷售量為y=240﹣ ×20=﹣4x+480(x≥60);
(2)解:根據(jù)題意可得,x(﹣4x+480)=14000,
解得x1=70,x2=50(不合題意舍去),
故當(dāng)銷售價(jià)為70元時(shí),月銷售額為14000元
(3)解:設(shè)一個(gè)月內(nèi)獲得的利潤(rùn)為w元,根據(jù)題意得:
w=(x﹣40)(﹣4x+480)
=﹣4x2+640x﹣19200
=﹣4(x﹣80)2+6400.
當(dāng)x=80時(shí),w的最大值為6400.
故當(dāng)銷售單價(jià)為80元時(shí),才能在一個(gè)月內(nèi)獲得最大利潤(rùn),最大利潤(rùn)是6400元
【解析】(1)由銷售單價(jià)為x元得到銷售減少量,用240減去銷售減少量得到y(tǒng)與x的函數(shù)關(guān)系式; (2)直接用銷售單價(jià)乘以銷售量等于14000,列方程求得銷售單價(jià); (3)設(shè)一個(gè)月內(nèi)獲得的利潤(rùn)為w元,根據(jù)題意得:w=(x﹣40)(﹣4x+480),然后利用配方法求最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)對(duì)一種新售的手機(jī)進(jìn)行市場(chǎng)問(wèn)卷調(diào)查,其中一個(gè)項(xiàng)目是讓每個(gè)人按A(不喜歡)、B(一般)、C(不比較喜歡)、D(非常喜歡)四個(gè)等級(jí)對(duì)該手機(jī)進(jìn)行評(píng)價(jià),圖①和圖②是該商場(chǎng)采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)以上統(tǒng)計(jì)圖提供的信息,回答下列問(wèn)題:
(1)本次調(diào)查的人數(shù)為多少人?A等級(jí)的人數(shù)是多少?請(qǐng)?jiān)趫D中補(bǔ)全條形統(tǒng)計(jì)圖.
(2)圖①中,a等于多少?D等級(jí)所占的圓心角為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖是某種窗戶的形狀,其上部是半圓形,下部是邊長(zhǎng)相同的四個(gè)小正方形,已知下部的小正方形的邊長(zhǎng)為am,計(jì)算:
(1)窗戶的面積;
(2)窗框的總長(zhǎng);
(3)若a=1,窗戶上安裝的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不計(jì),求制作這種窗戶需要的費(fèi)用是多少元(π取3.14,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,上七年級(jí)的小貝在一張紙上畫了一條數(shù)軸,妹妹不知道它有什么用處,就在上面畫了一只小貓和一只小狗,于是數(shù)軸上標(biāo)的數(shù)字有的看不到了,請(qǐng)根據(jù)數(shù)軸回答下列問(wèn)題:
(1)被小貓遮住的是正數(shù)還是負(fù)數(shù)?
(2)被小狗遮住的整數(shù)有幾個(gè)?
(3)此時(shí)小貓和小狗之間(即點(diǎn)A,B之間)的整數(shù)有幾個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠C=90°,AE是△ABC的角平分線;ED平分∠AEB,交AB于點(diǎn)D;∠CAE∠B.
(1)求∠B的度數(shù).
(2)如果AC=3cm,求AB的長(zhǎng)度.
(3)猜想:ED與AB的位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到(點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),點(diǎn)C′與點(diǎn)C是對(duì)應(yīng)點(diǎn)),連接CC′,則∠CC′B′的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),那么
①∠E′AF度數(shù)②線段BE、EF、FD之間的數(shù)量關(guān)系
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com