【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MNBC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F

1)求證:OE=OF;

2)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

3)當點O運動到何處,且△ABC滿足什么條件時,四邊形AECF是正方形?

【答案】1)證明見解析,(2)當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.證明見解析,(3)當點O在邊AC上運動到AC中點時,若∠ACB=90°,四邊形AECF為正方形.證明見解析.

【解析】

1)根據(jù)平行線的性質(zhì)以及角平分線的性質(zhì)得出∠1=2,∠3=4,進而得出答案;

2)根據(jù)AO=CO,EO=FO可得四邊形AECF平行四邊形,再證明∠ECF=90°利用矩形的判定得出即可;

3)當點O在邊AC上運動到AC中點時,若∠ACB=90°,四邊形AECF為正方形,首先證明為矩形,再證明ACEF根據(jù)對角線互相垂直的矩形是正方形可得結論.

1)證明:∵MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,

∴∠2=5,∠4=6,

MNBC

∴∠1=5,∠3=6,

∴∠1=2,∠3=4,

EO=CO,FO=CO,

OE=OF;

2)當點O在邊AC上運動到AC中點時,四邊形AECF是矩形.

證明:如圖,當OAC的中點時,AO=CO,

EO=FO

∴四邊形AECF是平行四邊形,

分別平分

ECF=90°,

∴平行四邊形AECF是矩形.

3)當點O在邊AC上運動到AC中點時,若∠ACB=90°,四邊形AECF為正方形.

證明:如圖,由(2)可得點O在邊AC上運動到AC中點時平行四邊形AECF是矩形,

∵∠ACB=90°,

∴∠2=45°,

∵平行四邊形AECF是矩形,

EO=CO,

∴∠1=2=45°,

∴∠MOC=90°,

ACEF,

∴四邊形AECF是正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD是一張邊長為4cm的正方形紙片,E,F分別為AB,CD的中點,沿過點D的折痕將A角翻折,使得點A落在EF上的點A′處折痕交AE于點G,則∠ADG=____°EG=___cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店需要購進甲、乙兩種商品共180件其進價和售價如表:(注:獲利=售價進價)

1)若商店計劃銷售完這批商品后能獲利1240元,問甲、乙兩種商品應分別購進多少件?

2)若商店計劃投入資金少于5040元,且銷售完這批商品后獲利多于1312元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點分別在射線、上運動(不與點重合).

1)如圖1,若,的平分線交于點,求的度數(shù);

2)如圖2,若,的外角、的平分線交于點,則等于______度(用含字母的代數(shù)式表示);

3)如圖3,若,的平分線,的反向延長線與的平分線交于點.試問:隨著點、的運動,的大小會變嗎?如果不會,求的度數(shù);如果會,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

點A、B在數(shù)軸上分別表示實數(shù)a、b,A、B兩點之間的距離表示為∣AB∣.

當A、B兩點中有一點在原點時,不妨設點A在原點,如圖1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;

當A、B兩點都不在原點時,如圖2,點A、B都在原點的右邊

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣= =∣a-b∣;

如圖3,當點A、B都在原點的左邊,

∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣==∣a-b∣;

如圖4,當點A、B在原點的兩邊,

∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= =∣a-b∣;

回答下列問題:

(1)數(shù)軸上表示1和6的兩點之間的距離是 ,數(shù)軸上表示2和-3的兩點之間的距離是 ;

(2)數(shù)軸上若點A表示的數(shù)是x,點B表示的數(shù)是-4,則點A和B之間的距離是 ,若∣AB∣=3,那么x為

(3)當x是 時,代數(shù)式

(4)若點A表示的數(shù),點B與點A的距離是10,且點B在點A的右側,動點P、Q同時從A、B出發(fā)沿數(shù)軸正方向運動,點P的速度是每秒3個單位長度,點Q的速度是每秒個單位長度,求運動幾秒后,點Q與點P 相距1個單位?(請寫出必要的求解過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的“值”定義如下:若點為圓上任意一點,線段長度的最大值與最小值之差即為點的“值”,記為.特別的,當點, 重合時,線段的長度為0.

當⊙的半徑為2時:

(1)若點, ,則_________, _________

(2)若在直線上存在點,使得,求出點的橫坐標;

(3)直線軸, 軸分別交于點 .若線段上存在點,使得,請你直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( 。

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在ABC中,AB=AC=5cosB=,P是邊AB上一點,以P為圓心,PB為半徑的P與邊BC的另一個交點為D,聯(lián)結PD、AD

(1)求△ABC的面積;

(2)設PB=x,△APD的面積為y,求y關于x的函數(shù)關系式,并寫出定義域;

(3)如果△APD是直角三角形,求PB的長.

查看答案和解析>>

同步練習冊答案