【題目】將五個(gè)邊長(zhǎng)都為2的正方形按如圖所示擺放,點(diǎn)A1、A2、A3、A4分別是四個(gè)正方形的中心,則圖中四塊陰影部分的面積的和為______

【答案】4

【解析】分析:連接AP、AN,點(diǎn)A是正方形的對(duì)角線的交點(diǎn),則AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,進(jìn)而可得四邊形AENF的面積等于△NAP的面積,同理可得答案.

詳解:如圖,連接AP,AN,點(diǎn)A是正方形的對(duì)角線的交
AP=AN,∠APF=∠ANE=45°,
∵∠PAF+∠FAN=∠FAN+∠NAE=90°,
∴∠PAF=∠NAE,
∴△PAF≌△NAE,
∴四邊形AENF的面積等于△NAP的面積,

而△NAP的面積是正方形的面積的,而正方形的面積為4,
∴四邊形AENF的面積為1cm2,四塊陰影面積的和為4cm2

故答案為:4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)在所給網(wǎng)格中按下列要求操作:

(1)在第二象限內(nèi)的格點(diǎn)上畫一點(diǎn)C, 使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形, 且腰長(zhǎng)是無(wú)理數(shù), 則C點(diǎn)坐標(biāo)是____________,△ABC的面積是_____________________

(2)畫出△ABC,以點(diǎn)C為旋轉(zhuǎn)中心、旋轉(zhuǎn)180°后的△A′B′C,連結(jié)AB′A′B, 則四邊形AB A′B′的形狀是何特殊四邊形?___________________

(3)在坐標(biāo)軸上是否存在P點(diǎn),使得△PAB與△CAB的面積相等?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo)(寫出一種情況即可)___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中∠C=90°,放置邊長(zhǎng)分別為4、6、x的三個(gè)正方形,則x的值為( )

A.24
B.12
C.10
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,根據(jù)2013﹣2017年某市財(cái)政總收入(單位:億元)統(tǒng)計(jì)圖所提供的信息,下列判斷正確的是( 。

A. 2013~2017年財(cái)政總收入呈逐年增長(zhǎng)

B. 預(yù)計(jì)2018年的財(cái)政總收入約為253.43億元

C. 2014~2015年與2016~2017年的財(cái)政總收入下降率相同

D. 2013~2014年的財(cái)政總收入增長(zhǎng)率約為6.3%

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃購(gòu)買籃球、排球共20個(gè),購(gòu)買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買3個(gè)籃球的費(fèi)用與購(gòu)買5個(gè)排球的費(fèi)用相同。

(1)籃球和排球的單價(jià)各是多少元?

(2)若購(gòu)買籃球不少于8個(gè),所需費(fèi)用總額不超過(guò)800元.請(qǐng)你求出滿足要求的所有購(gòu)買方案,并直接寫出其中最省錢的購(gòu)買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,拋物線y=x2+bx+c過(guò)點(diǎn)A(3,0),B(1,0),交y軸于點(diǎn)C,點(diǎn)P是該拋物線上一動(dòng)點(diǎn),點(diǎn)P從C點(diǎn)沿拋物線向A點(diǎn)運(yùn)動(dòng)(點(diǎn)P不與點(diǎn)A重合),過(guò)點(diǎn)P作PD∥y軸交直線AC于點(diǎn)D.

(1)求拋物線的解析式;
(2)求點(diǎn)P在運(yùn)動(dòng)的過(guò)程中線段PD長(zhǎng)度的最大值;
(3)△APD能否構(gòu)成直角三角形?若能請(qǐng)直接寫出點(diǎn)P坐標(biāo),若不能請(qǐng)說(shuō)明理由;
(4)在拋物線對(duì)稱軸上是否存在點(diǎn)M使|MA﹣MC|最大?若存在請(qǐng)求出點(diǎn)M的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB = BC,D、E、F分別是BC、AC、AB邊上的中點(diǎn);

(1)求證:四邊形BDEF是菱形;(2)若AB =12cm,求菱形BDEF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)By軸的正半軸上,點(diǎn)A在反比例函數(shù)的圖象上,點(diǎn)D的坐標(biāo)為.將菱形ABCD沿x軸正方向平移____個(gè)單位,可以使菱形的另一個(gè)頂點(diǎn)恰好落在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,AB=20,AC=15,BC邊上的高為12,求ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案