【題目】1是一種折疊門,由上下軌道和兩扇長(zhǎng)寬相等的活頁(yè)門組成,整個(gè)活頁(yè)門的右軸固定在門框

上,通過推動(dòng)左側(cè)活頁(yè)門開關(guān);圖2是其俯視圖簡(jiǎn)化示意圖,已知軌道 ,兩扇活頁(yè)門的寬 ,點(diǎn)固定,當(dāng)點(diǎn)上左右運(yùn)動(dòng)時(shí),的長(zhǎng)度不變(所有結(jié)果保留小數(shù)點(diǎn)后一位).

(1),的長(zhǎng);

(2)當(dāng)點(diǎn)從點(diǎn)向右運(yùn)動(dòng)60時(shí),求點(diǎn)在此過程中運(yùn)動(dòng)的路徑長(zhǎng).

參考數(shù)據(jù):sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π3.14)

1 2

【答案】(1)43.2cm. (2)62.8cm.

【解析】

(1)如圖,作OHABH,在RtOBH中, cosOBC= ,求得BH的長(zhǎng),再根據(jù)AC=AB-2BH即可求得AC的長(zhǎng);

(2)由題意可知△OBC是等邊三角形,由此即可求出弧OC的長(zhǎng),即點(diǎn)O在此過程中運(yùn)動(dòng)的路徑長(zhǎng).

(1)如圖,作OHABH,

OC=OB=60,CH=BH,

RtOBH

cosOBC= ,

BH= OB·cos50°≈60×0.64=38.4,

AC=AB-2BH≈120-2×38.4=43.2,

AC的長(zhǎng)約為43.2cm;

(2)AC=60,BC=60 ,

OC=OB=60,

OC=OB=BC=60 ,

∴△OBC是等邊三角形,

的長(zhǎng)==2 =62.8,

∴點(diǎn)O在此過程中運(yùn)動(dòng)的路徑長(zhǎng)約為62.8cm.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一列有理數(shù)﹣12,﹣3,4,﹣5,6,…如圖所示有序排列,根據(jù)圖中的排列規(guī)律可知,“峰1”中峰頂?shù)奈恢茫?/span>C的位置)是有理數(shù)4,那么,“峰6”中C的位置是有理數(shù)_____,﹣2019應(yīng)排在A、B、CD、E中的_____位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)能被13整除的自然數(shù)我們稱為十三數(shù)”,“十三數(shù)的特征是:若把這個(gè)自然數(shù)的末三位與末三位以前的數(shù)字組成的數(shù)之差,如果能被13整除,那么這個(gè)自然數(shù)就一定能被13整除.例如:判斷383357能不能被13整除,這個(gè)數(shù)的末三位數(shù)字是357,末三位以前的數(shù)字組成的數(shù)是383,這兩個(gè)數(shù)的差是383﹣357=26,26能被13整除,因此383357十三數(shù)”.

(1)判斷3253254514是否為十三數(shù),請(qǐng)說(shuō)明理由.

(2)若一個(gè)四位自然數(shù),千位數(shù)字和十位數(shù)字相同,百位數(shù)字與個(gè)位數(shù)字相同,則稱這個(gè)四位數(shù)為間同數(shù)”.

求證:任意一個(gè)四位間同數(shù)能被101整除.

若一個(gè)四位自然數(shù)既是十三數(shù),又是間同數(shù),求滿足條件的所有四位數(shù)的最大值與最小值之差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù) 的圖象與正比例函數(shù) 的圖象相交于(1,),兩點(diǎn),點(diǎn)在第四象限, 軸,.

(1)的值及點(diǎn)的坐標(biāo);

(2)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】概念學(xué)習(xí)

規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱這兩個(gè)三角形互為“等角三角形”.

從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來(lái)三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.

理解概念

如圖1,在中,,,請(qǐng)寫出圖中兩對(duì)“等角三角形”概念應(yīng)用

如圖2,在中,CD為角平分線,,

求證:CD的等角分割線.

中,,CD的等角分割線,直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為8/千克,投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷售量(千克)與銷售單價(jià)(/千克)之間的函數(shù)關(guān)系如圖所示.

(1)的函數(shù)關(guān)系式,并寫出的取值范圍;

(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷售,能否銷售完這批蜜柚?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,若OBC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為(  )

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游樂場(chǎng)一轉(zhuǎn)角滑梯如圖所示,滑梯立柱AB、CD均垂直于地面,點(diǎn)E在線段BD上,在C點(diǎn)測(cè)得點(diǎn)A的仰角為30°,點(diǎn)E的俯角也為30°,測(cè)得B、E間距離為10米,立柱AB30米.求立柱CD的高(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將等腰直角三角板ABC的直角頂點(diǎn)C放在直線l上,從另兩個(gè)頂點(diǎn)AB分別作l的垂線,垂足分別為DE

1)找出圖中的全等三角形,并加以證明;

2)若直角梯形DABE的面積為a,求AD+BE的值(用含有a的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案