【題目】已知△ABC中,a、b、c分別是∠A、∠B、∠C的對(duì)邊,下列條件不能判斷△ABC是直角三角形的是 ( )
A. ∠A=∠C-∠B B. a2=b2-c2 C. a:b:c=2:3:4 D. a=,b=,c=1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍時(shí),我們稱此三角形為“夢(mèng)想三角形”.如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,那么這個(gè)“夢(mèng)想三角形”的最小內(nèi)角的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線CB,DC相交于點(diǎn)E,F(xiàn),且∠EAF=60°.
(1)如圖1,當(dāng)點(diǎn)E是線段CB的中點(diǎn)時(shí),直接寫(xiě)出線段AE,EF,AF之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點(diǎn)E是線段CB上任意一點(diǎn)時(shí)(點(diǎn)E不與B、C重合),求證:BE=CF;
(3)如圖3,當(dāng)點(diǎn)E在線段CB的延長(zhǎng)線上,且∠EAB=15°時(shí),求點(diǎn)F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是矩形ABCD的對(duì)角線,過(guò)AC的中點(diǎn)O作EF⊥AC,交BC于點(diǎn)E,交AD于點(diǎn)F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB= ,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖的方式放置,點(diǎn)C1、C2、C3…在x軸上,點(diǎn)A1、A2、A3…在直線l上,A1(0,1),∠A2 A1B1=45°,則點(diǎn)Bn的坐標(biāo)為____________(用n的代數(shù)式表示,n為正整數(shù));
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的頂點(diǎn)坐標(biāo)為A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C′,點(diǎn)B′、C′分別是點(diǎn)B、C的對(duì)應(yīng)點(diǎn).
(1)求過(guò)點(diǎn)B′的反比例函數(shù)解析式;
(2)求線段CC′的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在踐行“社會(huì)主義核心價(jià)值觀”演講比賽中,對(duì)名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:
組號(hào) | 分組 | 頻數(shù) |
一 | 6≤m<7 | 2 |
二 | 7≤m<8 | 7 |
三 | 8≤m<9 | a |
四 | 9≤m≤10 | 2 |
(1)求a的值;
(2)若用扇形圖來(lái)描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對(duì)應(yīng)的扇形圖的圓心角大小;
(3)將在第一組內(nèi)的兩名選手記為:A1、A2 , 在第四組內(nèi)的兩名選手記為:B1、B2 , 從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹(shù)狀圖或列表法列出所有可能結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABC是等邊三角形,點(diǎn)D是線段AC上的一動(dòng)點(diǎn),E在BC的延長(zhǎng)線上,且BD=DE.
(1)如圖,若點(diǎn)D為線段AC的中點(diǎn),求證:AD=CE;
(2)如圖,若點(diǎn)D為線段AC上任意一點(diǎn),求證:AD=CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC=2 ,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則BE的長(zhǎng)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com