【題目】已知:在平面直角坐標系中,點O為坐標原點,直線y=﹣x+bx軸交于點A,與y軸交于點C.經(jīng)過點A,C的拋物線yax2+3ax3x軸的另一個交點為點B

1)如圖1,求a的值;

2)如圖2,點D,E分別在線段AC,AB上,且BE2AD,連接DE,將線段DE繞點D順時針旋轉(zhuǎn)得到線段DF,且旋轉(zhuǎn)角∠EDF=∠OAC,連接CF,求tanACF的值;

3)如圖3,在(2)的條件下,當(dāng)∠DFC135°時,在線段AC的延長線上取點M,過點MMNDE交拋物線于點N,連接DN,EM,若MNDF,求點N的橫坐標.

【答案】1a;(2;(3

【解析】

1)求出點A(﹣4,0),將點A的坐標代入二次函數(shù)表達式,即可求解;

2)證明ADE≌△GFD,即可求解;

3)證明DET≌△MSNAAS),則MSDT,NSET ,設(shè)點Mx,﹣x3),則點Nx, ),將點N的坐標代入二次函數(shù)表達式,即可求解.

解:(1yax2+3ax3,當(dāng)x0y=﹣3,故點C0,﹣3),

將點C的坐標代入直線表達式并解得:b=﹣3,

則直線AC的表達式為:y=﹣x3,則點A(﹣4,0),

將點A的坐標代入二次函數(shù)表達式并解得:a

2)在直線AC上取點G使DGAE,連接FG,過點FFHAC,

∵∠FDC+FDE=∠BAC+AED,而∠BAC=∠EDF,

∴∠FDH=∠AED,

DGAE,DFDE,

∴△ADE≌△GFD

ADGF,

ABAC5,BE2AD

ADGFCG,

tanBAC ,設(shè)FH3m,則HG4m,FG5mGC

tanACF ;

3)如圖3,過點DDRFCFC的延長線于點R,過點FFHCD交于點H,

由(2)知tanACF ,

RtCDR中,設(shè)DRt,則CR3tCD10t,

∵∠DFC135°,則DFR是等腰直角三角形,則FRDRt,

CFCRCF2t

RtFHC中,tanACF

FH2t,CH6t,DHCDCH10t6t4t

tanFDHtanAED,

RtADT中,tanBAC ,

設(shè):DT3n,則AT4n,AD5n

RtDTE中,tanAED

ET2DT6n,BE2AD10n,

AT+TE+BEAB,即4n+6n+10n5,

解得:n,

ETDT;

MNEFDE,且MNDE,

∴四邊形MNDE為平行四邊形,∴∠DEM=∠DNM

過點Nx軸的平行線交直線AC于點K,過點MMSNK于點S

則∠AEM=∠KND,∴∠TED=∠MNS

MNDE,∠ETD=∠MSN90°,

∴△DET≌△MSNAAS),

MSDTNSET,

設(shè)點Mx,﹣x3),則點Nx, ),

將點N的坐標代入二次函數(shù)表達式得:

解得: (舍去負值),

故點N的橫坐標為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為4的正方形ABCD的一邊BC與直角邊分別是2和4的RtGEF的

一邊GF重合.正方形ABCD以每秒1個單位長度的速度沿GE向右勻速運動,當(dāng)點A和點E重合時正方形停止運

動.設(shè)正方形的運動時間為t秒,正方形ABCD與RtGEF重疊部分面積為s,則s關(guān)于t的函數(shù)圖象為

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,AB=3,E在邊CD,CD=3DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.BG的長為(

A. 1B. 2C. 1.5D. 2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了對學(xué)生進行革命傳統(tǒng)教育,紅旗中學(xué)開展了“清明節(jié)祭掃”活動.全校學(xué)生從學(xué)校同時出發(fā),步行米到達烈士紀念館.學(xué)校要求九班提前到達目的地,做好活動的準備工作.行走過程中,九(1)班步行的平均速度是其他班的倍,結(jié)果比其他班提前分鐘到達.分別求九(1)班、其他班步行的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,.將ABC繞點A逆時針旋轉(zhuǎn)60°,得到AB'C'(點B,C的對應(yīng)點分別為點B,C),延長CB分別交AC,BC于點DE,若DE2,則AD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級表演經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈等節(jié)目.小穎對每屆藝術(shù)節(jié)表演這些節(jié)目的班級數(shù)進行統(tǒng)計,并繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

(1)五屆藝術(shù)節(jié)共有________個班級表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計圖中,第四屆班級數(shù)的扇形圓心角的度數(shù)為________;

(2)補全折線統(tǒng)計圖;

(3)第六屆藝術(shù)節(jié),某班決定從這四項藝術(shù)形式中任選兩項表演(“經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱民族舞蹈分別用,,表示).利用樹狀圖或表格求出該班選擇兩項的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形AOBC中,對角線交于點E,雙曲線y=(k>0)經(jīng)過A、E兩點,若平行四邊形AOBC的面積為24,則k的值是( 。

A. 8B. 7.5C. 6D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,矩形ABOC的邊BOx軸的負半軸上,邊OCy軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉(zhuǎn)60°后得到矩形EFOD.點A的對應(yīng)點為點E,點B的對應(yīng)點為點F,點C的對應(yīng)點為點D,拋物線y=ax2+bx+c過點AE,D

1)判斷點E是否在y軸上,并說明理由;

2)求拋物線的函數(shù)表達式;

3)在x軸的上方是否存在點P,點Q,使以點O,BP,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案