【題目】如圖,AD,CE△ABC的角平分線且交于O點,∠DAC=30°,∠ECA=35°,則∠ABO等于( 。

A. 25° B. 30° C. 35° D. 40°

【答案】A

【解析】

:由角分線的性質有:∠BAO=CAO,ABO=CBO,ACO=BCO;

根據(jù)∠DAC=30°,BAC=60°ECA=35°,ACB=70°可以求出∠ABC的度數(shù),那么

ABO即為∠ABC的一半,據(jù)此求解.

AD、CE為∠BAC和∠ACB的角分線,

∴∠BAO=CAO,ABO=CBO,ACO=BCO.

∵∠DAC=30°,BAC=60°,ECA=35°,ACB=70°,

∴∠ABC=50°.

BO為∠ABC的平分線,

∴∠ABO=25°.

故答案選A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知AB=AC,D為∠BAC的角平分線上面一點,連接BD,CD;如圖2,已知AB=AC,D、E為∠BAC的角平分線上面兩點,連接BD,CD,BE,CE;如圖3,已知AB=AC,D、E、F為∠BAC的角平分線上面三點,連接BD,CD,BE,CE,BF,CF;…,依次規(guī)律,第n個圖形中有全等三角形的對數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABDC中,AB6,ECD上,DE2,將△ADE沿AE折疊至△AFE,延長EFBCG,連AGCF,下列結論:①△ABG≌△AFG;②BGCG;③AGCF;④FCG3,其中正確的有( ).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近年來,在初中數(shù)學教學候總使用計算器是否直接影響學生計算能力的發(fā)展這一問題受到了廣泛關注,為此,某校隨機調查了n名學生對此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調查結果 繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:

n名學生對使用計算器影響計算能力的發(fā)展看法人數(shù)統(tǒng)計表

看法

沒有影響

影響不大

影響很大

學生人數(shù)(人)

40

60

m

1)求n的值;

2)統(tǒng)計表中的m= ;

3)估計該校1800名學生中認為影響很大的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,對角線AC、BD相交于點O,下列條件不能判定這個四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,DAB上一點,過D點作AB垂線,交ACE,交BC的延長線于F

1)∠1與∠B有什么關系?說明理由.

2)若BCBD,請你探索ABFB的數(shù)量關系,并且說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB4,BC8,將紙片沿EF折疊,使點C與點A重合,則下列結論錯誤的是( )

A. AFAE B. ABE≌△AGF C. EF D. AFEF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=4,∠BAD=120°,以點A為頂點的一個60°的角∠EAF繞點A旋轉,∠EAF的兩邊分別交BC,CD于點E,F(xiàn),且E,F(xiàn)不與B,C,D重合,連接EF.

(1)求證:BE=CF.

(2)在∠EAF繞點A旋轉的過程中,四邊形 AECF的面積是否發(fā)生變化?如果不變,求出其定值;如果變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=4,BC=8,將紙片折疊,使點C與點A重合,折痕為EF,點D的對應點為G,連接DG,則圖中陰影部分面積是(

A. 5 B. 3 C. D.

查看答案和解析>>

同步練習冊答案