【題目】如圖,在平行四邊形ABCD中,點O是對角線AC的中點,點EBC上一點,且ABAE,連接EO并延長交AD于點F.過點BAE的垂線,垂足為H,交AC于點G

1)若AH3HE1,求ABE的面積;

2)若∠ACB45°,求證:DFCG

【答案】(1)2;(2)詳見解析.

【解析】

(1)利用勾股定理即可得出BH的長,進而運用公式得出△ABE的面積;
(2)過A作AM⊥BC于M,交BG于K,過G作GN⊥BC于N,判定△AME≌△BNG(AAS),可得ME=NG,進而得出BE=GC,再判定△AFO≌△CEO(AAS),可得AF=CE,即可得到DF=BE=CG.

解:(1)∵AH=3,HE=1,

ABAE=4,

又∵Rt△ABH中,BH,

SABE;

(2)如圖,過AAMBCM,交BGK,過GGNBCN,則∠AMB=∠AME=∠BNG=90°,

∵∠ACB=45°,

∴∠MAC=∠NGC=45°,

ABAE,

BMEMBE,∠BAM=∠EAM,

又∵AEBG,

∴∠AHK=90°=∠BMK,而∠AKH=∠BKM,

∴∠MAE=∠NBG,

設∠BAM=∠MAE=∠NBG=α,則∠BAG=45°+α,∠BGA=∠GCN+∠GBC=45°+α,

ABBG

AEBG

在△AME和△BNG中,

,

∴△AME≌△BNGAAS),

MENG,

在等腰Rt△CNG中,NGNC,

GCNGMEBE,

BEGC,

OAC的中點,

OAOC,

∵四邊形ABCD是平行四邊形,

ADBCADBC,

∴∠OAF=∠OCE,∠AFO=∠CEO,

∴△AFO≌△CEOAAS),

AFCE

ADAFBCEC,即DFBE,

DFBECG

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=ABC=90°E是邊CD的中點,連接BE并延長與AD的延長線相交于點F,連接CF.四邊形BDFC是平行四邊形嗎?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,已知點A、B在雙曲線x>0)上,AC⊥x軸于C,BD⊥y軸于點D,ACBD交于點P,PAC的中點,點B的橫坐標為bAB的坐標分別為_____、______(bk表示),由此可以猜想APCP的數(shù)量關系是______.

(2)四邊形ABCD的四個頂點分別在反比例函數(shù)yy的圖象上,對角線BDy軸,且BDAC于點P,PBD的中點,點B的橫坐標為4

①當時,判斷四邊形ABCD的形狀并說明理由.

②四邊形ABCD能否成為正方形?若能,直接寫出此時m,n之間的數(shù)量關系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知P是正方形ABCD內一點,PA1PB2,PC3,以點B為旋轉中心,將ABP按順時針方向旋轉使點A與點C重合,這時P點旋轉到G點.

1)請畫出旋轉后的圖形,說出此時ABP以點B為旋轉中心最少旋轉了多少度;

2)求出PG的長度;

3)請你猜想PGC的形狀,并說明理由;

4)請你計算∠BGC的角度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接小長假的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:

運動鞋
價格



進價(元/雙)

m

m﹣20

售價(元/雙)

240

160

已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.

1)求m的值;

2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價進價)不少于21700元,且不超過22300元,問該專賣店有幾種進貨方案?

3)在(2)的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠a50a70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】望江中學為了了解學生平均每天“誦讀經典”的時間,在全校范圍內隨機抽查了部分學生進行調查統(tǒng)計,并將調查統(tǒng)計的結果分為:每天誦讀時間t≤20分鐘的學生記為A類,20分鐘<t≤40分鐘的學生記為B類,40分鐘<t≤60分鐘的學生記為C類,t>60分鐘的學生記為D類四種.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)m=%,n=%,這次共抽查了名學生進行調查統(tǒng)計;

(2)請補全上面的條形統(tǒng)計圖;

(3)如果該校共有1200名學生,請你估計該校C類學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,O是矩形ABCD的對角線的交點,作DE∥AC,CE∥BD,DE、CE相交于點E.求證:

(1)四邊形OCED是菱形.

(2)連接OE,若AD=4,CD=3,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,點PAC邊上一個動點,過P作直線EFBC,交∠ACB的平分線于點E,交∠ACB的外角∠ACD平分線于點F

1)請說明:PEPF;

2)當點PAC邊上運動到何處時,四邊形AECF是矩形?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+x+3x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,連接AC、BC.點P沿AC以每秒1個單位長度的速度由點A向點C運動,同時,點Q沿BO以每秒2個單位長度的速度由點B向點O運動,當一個點停止運動時,另一個點也隨之停止運動,連接PQ.過點QQDx軸,與拋物線交于點D,與BC交于點E,連接PD,與BC交于點F.設點P的運動時間為t秒(t>0).

(1)求直線BC的函數(shù)表達式;

(2)①直接寫出P,D兩點的坐標(用含t的代數(shù)式表示,結果需化簡)

②在點P、Q運動的過程中,當PQ=PD時,求t的值;

(3)試探究在點P,Q運動的過程中,是否存在某一時刻,使得點FPD的中點?若存在,請直接寫出此時t的值與點F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案