【題目】如圖,在△ABC中,AC=BC=5,AB=8,AB⊥x軸,垂足為A,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,交AB于點D.
(1)若OA=AB,求k的值;
(2)若BC=BD,連接OC,求△OAC的面積.
【答案】(1)k=20;(2)24.
【解析】
(1)過點C作CE⊥AB于點E,CF⊥OA于F,則CF=AE.由AB=8,AC=BC,CE⊥AB,可得AE=BE=CF=4,可求C點坐標(biāo),即可求k的值.
(2)設(shè)A點坐標(biāo)為(m,0),則C,D兩點坐標(biāo)分別為(m-3,4),(m,3),由C,D是反比例函數(shù)y=(x>0)的圖象上的點.可求m的值,即可求A,C坐標(biāo),可得△OAC的面積.
解:(1)過點C作CE⊥AB于點E,CF⊥OA于F,則CF=AE
∵AB=8,AC=BC,CE⊥AB
∴BE=AE=CF=4
∵AC=BC=5
∴CE=3
∵OA=AB=8
∴OF=5
∴點C(5,4)
∵點C在y=圖象上
∴k=20
(2)∵BC=BD=5,AB=8
∴AD=3
設(shè)A點坐標(biāo)為(m,0),則C,D兩點坐標(biāo)分別為(m﹣3,4),(m,3)
∵C,D在y=圖象上
∴4(m﹣3)=3m
∴m=12
∴A(12,0),C(9,4),D(12,3)
∴S△AOC=×12×4=24
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有四張正面分別標(biāo)有數(shù)字﹣1,0,1,2的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機(jī)抽取一張卡片,求抽到數(shù)字“﹣1”的概率;
(2)隨機(jī)抽取一張卡片,然后不放回,再隨機(jī)抽取一張卡片,請用列表或畫樹狀圖的方法求出第一次抽到數(shù)字“2”且第二次抽到數(shù)字“0”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】城市中“打車難”一直是人們關(guān)注的一個社會熱點問題.近幾年來,“互聯(lián)網(wǎng)+”戰(zhàn)略與傳統(tǒng)出租車行業(yè)深度融合,“優(yōu)步”、“滴滴出行”等打車軟件就是其中典型的應(yīng)用,名為“數(shù)據(jù)包絡(luò)分析”(簡稱DEA)的一種效率評價方法,可以很好地優(yōu)化出租車資源配置,為了解出租車資源的“供需匹配”,北京、上海等城市對每天24個時段的DEA值進(jìn)行調(diào)查,調(diào)查發(fā)現(xiàn),DEA值越大,說明匹配度越好.在某一段時間內(nèi),北京的DEA值y與時刻t的關(guān)系近似滿足函數(shù)關(guān)系(a,b,c是常數(shù),且≠0),如圖記錄了3個時刻的數(shù)據(jù),根據(jù)函數(shù)模型和所給數(shù)據(jù),當(dāng)“供需匹配”程度最好時,最接近的時刻t是( )
A. 4.8 B. 5 C. 5.2 D. 5.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)與反比例函數(shù)的圖象相交于AB、兩點,分別以AB、兩點為圓心,畫與x軸相切的兩個圓,若點A的坐標(biāo)為(2,1),則圖中兩個陰影部分面積的和是( 。
A. B. C. π D. 4π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y=和y=在第一象限內(nèi)的圖象如圖所示,點P在y=的圖象上,PC⊥x軸,交y=的圖象于點A,PD⊥y軸,交y=的圖象于點B.當(dāng)點P在y=的圖象上運(yùn)動時,以下結(jié)論:①△ODB與△OCA的面積相等;②PA與PB始終相等;③四邊形PAOB的面積不會發(fā)生變化;④當(dāng)點A是PC的中點時,點B一定是PD的中點.其中一定正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(1,4),B(4,n)兩點.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)x>0時,kx+b<的解集.
(3)點P是x軸上的一動點,試確定點P并求出它的坐標(biāo),使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸l如圖所示,則下列結(jié)論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結(jié)論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】釣魚島是我國固有領(lǐng)土,為測量釣魚島東西兩端A,B的距離,如圖2,我勘測飛機(jī)在距海平面垂直高度為1公里的點C處,測得端點A的俯角為45°,然后沿著平行于AB的方向飛行3.2公里到點D,并測得端點B的俯角為37°,求釣魚島兩端AB的距離.(結(jié)果精確到0.1公里,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com