【題目】某地城管需要從甲、乙兩個(gè)倉庫向A、B兩地分別運(yùn)送10噸和5噸的防寒物資,甲、乙兩倉庫分別有8噸、7噸防寒物資.從甲、乙兩倉庫運(yùn)送防寒物資到A、B兩地的運(yùn)費(fèi)單價(jià)(元/噸)如表1,設(shè)從甲倉庫運(yùn)送到A地的防寒物資為x噸(如表2).
(1)完成表2 , ;
(2)求運(yùn)送的總運(yùn)費(fèi)y(元)與x(噸)之間的函數(shù)表達(dá)式,并直接寫出x的取值范圍;
(3)直接寫出最低總運(yùn)費(fèi).
【答案】(1);(2);(3)990元.
【解析】
(1)由題意填表即可;
(2)根據(jù)題意表示出甲倉庫和乙倉庫分別運(yùn)往A、B兩港口的物資數(shù),再由等量關(guān)系:總運(yùn)費(fèi)=甲倉庫運(yùn)往A、B港口的費(fèi)用+乙倉庫運(yùn)往A、B港口的費(fèi)用,列式并化簡解答即可;
(3)因?yàn)樗玫暮瘮?shù)為一次函數(shù),由増減性可知:y隨x增大而減少,則當(dāng)x=8時(shí),y最小,并求出最小值即可
(1)設(shè)從甲倉庫運(yùn)送到地的防寒物資為噸,可得從甲倉庫運(yùn)送到地的防寒物資為噸,從乙倉庫運(yùn)送到B地的防寒物資為噸;
故答案為:,
(2)運(yùn)送的總運(yùn)費(fèi)y(元)與x(噸)之間的函數(shù)表達(dá)式為:,化簡得:
(3)由(2)得,隨增大而減少,所以當(dāng)時(shí)總運(yùn)費(fèi)最小,當(dāng)時(shí),,最低總運(yùn)費(fèi)為990元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F點(diǎn)若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則周長的最小值為
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=4,AC的垂直平分線EF交AD于點(diǎn)E、交BC于點(diǎn)F,則EF的長為( 。
A. 4 B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知等腰直角中,BD為斜邊上的中線,E為DC上的一點(diǎn),且于G,AG交BD于F.
(1)求證:AF=BE.
(2)如圖②,當(dāng)點(diǎn)E在DC的延長線上,其它條件不變,①的結(jié)論還能成立嗎?若不能,請說明理由;若能,請予以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下:
閱讀時(shí)間 (小時(shí)) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說法正確的是( 。
A. 眾數(shù)是8 B. 中位數(shù)是3 C. 平均數(shù)是3 D. 方差是0.34
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在求1+3+32+34+35+36+37+38的值時(shí),張紅發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的3倍,于是她假設(shè):S=1+3+32+33+34+35+36+37+38①,然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②﹣①得:3S﹣S=39﹣1,即2S=39﹣1,∴S=.
請閱讀張紅發(fā)現(xiàn)的規(guī)律,并幫張紅解決下列問題:
(1)愛動腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),應(yīng)該能用類比的方法求出1+m+m2+m3+m4+…+m2018的值,對該式的值,你的猜想是______(用含m的代數(shù)式表示).
(2)證明你的猜想是正確的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,直線L:y=mx+5m與x軸負(fù)半軸,y軸正半軸分別交于A、B兩點(diǎn).
(1)當(dāng)OA=OB時(shí),求點(diǎn)A坐標(biāo)及直線L的解析式;
(2)在(1)的條件下,如圖②所示,設(shè)Q為AB延長線上一點(diǎn),作直線OQ,過A、B兩點(diǎn)分別作AM⊥OQ于M,BN⊥OQ于N,若AM=4,求BN的長;
(3)當(dāng)m取不同的值時(shí),點(diǎn)B在y軸正半軸上運(yùn)動,分別以OB、AB為邊,點(diǎn)B為直角頂點(diǎn)在第一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點(diǎn),如圖③.
問:當(dāng)點(diǎn)B在y軸正半軸上運(yùn)動時(shí),試猜想PB的長是否為定值?若是,請求出其值;若不是,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以邊為直徑的⊙經(jīng)過點(diǎn),是⊙上一點(diǎn),連結(jié)交于點(diǎn),且,.
(1)試判斷與⊙的位置關(guān)系,并說明理由;
(2)若點(diǎn)是弧的中點(diǎn),已知,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD交于點(diǎn)M,點(diǎn)F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點(diǎn)E是BC的中點(diǎn),若點(diǎn)P以1cm/s秒的速度從點(diǎn)A出發(fā),沿AD向點(diǎn)F運(yùn)動;點(diǎn)Q同時(shí)以2cm/秒的速度從點(diǎn)C出發(fā),沿CB向點(diǎn)B運(yùn)動,點(diǎn)P運(yùn)動到F點(diǎn)時(shí)停止運(yùn)動,點(diǎn)Q也同時(shí)停止運(yùn)動,當(dāng)點(diǎn)P運(yùn)動__秒時(shí),以P、Q、E、F為頂點(diǎn)的四邊形是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com