【題目】蕪湖市某醫(yī)院計(jì)劃選購(gòu)A,B兩種防護(hù)服.已知A防護(hù)服每件價(jià)格是B防護(hù)服每件價(jià)格的2倍,用80000元單獨(dú)購(gòu)買(mǎi)A防護(hù)服比用80000元單獨(dú)購(gòu)買(mǎi)B防護(hù)服要少50件.如果該醫(yī)院計(jì)劃購(gòu)買(mǎi)B防護(hù)服的件數(shù)比購(gòu)買(mǎi)A防護(hù)服件數(shù)的2倍多8件,且用于購(gòu)買(mǎi)A,B兩種防護(hù)服的總經(jīng)費(fèi)不超過(guò)320000元,那么該醫(yī)院最多可以購(gòu)買(mǎi)多少件B防護(hù)服?
【答案】204件
【解析】
先設(shè)B防護(hù)服的單價(jià)為x元/件,則A防護(hù)服的單價(jià)為2x元/件,根據(jù)題意列出分式方程,求解得到A、B兩種防護(hù)服的價(jià)格,再設(shè)該醫(yī)院買(mǎi)a件A防護(hù)服,(2a+8)件B防護(hù)服列出不等式,求解即可得到答案;
解:設(shè)B防護(hù)服的單價(jià)為x元/件,則A防護(hù)服的單價(jià)為2x元/件
由題意,可得,
解得x=800,2x=1600,經(jīng)檢驗(yàn)符合題意
設(shè)該醫(yī)院買(mǎi)a件A防護(hù)服,(2a+8)件B防護(hù)服,
則1600a+800(2a+8)≤320000,
得到:3200a≤313600,
即a≤98.
∴2a+8≤204
∴最多可以購(gòu)買(mǎi)204件B防護(hù)服,
答:最多可以購(gòu)買(mǎi)204件B防護(hù)服.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,,,點(diǎn)D,E分別是邊,的中點(diǎn),連接.將繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn)
①當(dāng)時(shí),;②當(dāng)時(shí),;
(2)拓展探究
試判斷:當(dāng)時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;
(3)問(wèn)題解決
當(dāng)旋轉(zhuǎn)至時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若B、P在直線a的異側(cè), BM直線a于點(diǎn)M,CN直線a于點(diǎn)N,連接PM、PN;
(1) 延長(zhǎng)MP交CN于點(diǎn)E(如圖2)。 求證:△BPM△CPE; 求證:PM = PN;
(2) 若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B、P在直線a的同側(cè),其它條件不變。此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(3) 若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變。請(qǐng)直接判斷四邊形MBCN
的形狀及此時(shí)PM=PN還成立嗎?不必說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC和BD相交于點(diǎn)O,AC=10,BD=4,動(dòng)點(diǎn)P在邊AB上運(yùn)動(dòng),以點(diǎn)O為圓心,OP為半徑作⊙O,CQ切⊙O于點(diǎn)Q,則在點(diǎn)P運(yùn)動(dòng)過(guò)程中,CQ的長(zhǎng)的最大值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D為AB上的一點(diǎn),以CD為直徑的⊙O交AC于E,連接BE交CD于P,交⊙O于F,連接DF,∠ABC=∠EFD.
(1)求證:AB與⊙O相切;
(2)若AD=4,BD=6,則⊙O的半徑= ;
(3)若PC=2PF,BF=a,求CP(用a的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫(huà)弧交⊙O于點(diǎn)C,連結(jié)BC交AD于點(diǎn)E,若DE=3,BC=8,則⊙O的半徑長(zhǎng)為( )
A.B.5C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交
于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫(xiě)出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在軸正半軸上,軸,點(diǎn)的橫坐標(biāo)都是,且,點(diǎn)在上,若反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),且.
(1)求點(diǎn)坐標(biāo);
(2)將沿著折疊,設(shè)頂點(diǎn)的對(duì)稱點(diǎn)為,試判斷點(diǎn)是否恰好落在直線上,為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A坐標(biāo)為(-8,0),點(diǎn)B坐標(biāo)為(0,6),⊙O的半徑為4(O為坐標(biāo)原點(diǎn)),點(diǎn)C是⊙O上一動(dòng)點(diǎn),過(guò)點(diǎn)B作直線AC的垂線BP,P為垂足.點(diǎn)C在⊙O上運(yùn)動(dòng)一周,則點(diǎn)P運(yùn)動(dòng)的路徑長(zhǎng)等于________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com