【題目】如圖,在平面直角坐標系中,已知點,,,把一根長為2019個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在處,并按的規(guī)律緊繞在四邊形的邊上,則細線的另一端點所在位置的坐標是__________.

【答案】

【解析】

由點A,B,C,D的坐標可得出四邊形ABCD為矩形及AB,AD的長,由矩形的周長公式可求出矩形ABCD的周長,結合2019202×101可得出細線的另一端在線段AD上且距A1個單位長度,結合點A的坐標即可得出結論.

解:∵A21),B1,1),C1,1),D2,1),

AB3,AD2,四邊形ABCD為矩形,

C矩形ABCD=(32×210

2019202×101

∴細線的另一端在線段AD上,且距A1個單位長度,

∴細線的另一端所在位置的點的坐標是(2,11),即(2,0).

故答案為:(2,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1□ABCD的對角線AC,BD相交于點O,且AEBD,BEACOECD

1)求證:四邊形 ABCD 是菱形;

2)若∠ADC60°BE2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BC=3,AC=5,B=45°,則下面結論正確的是_____

①∠C一定是鈍角;

②△ABC的外接圓半徑為3;

③sinA=;

ABC外接圓的外切正六邊形的邊長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點、分別是等邊各邊上的點,且,

)求證:是等邊三角形.

)若,求等邊的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

【答案】(1)b=﹣2a,頂點D的坐標為(﹣,﹣);(2);(3) 2≤t<

【解析】試題分析:(1)把M點坐標代入拋物線解析式可得到ba的關系,可用a表示出拋物線解析式,化為頂點式可求得其頂點D的坐標;
(2)把點代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關于x的一元二次方程,可求得另一交點N的坐標,根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當GH與拋物線只有一個公共點時,t的值,再確定當線段一個端點在拋物線上時,t的值,可得:線段GH與拋物線有兩個不同的公共點時t的取值范圍.

試題解析:(1)∵拋物線有一個公共點M(1,0),

a+a+b=0,即b=2a,

∴拋物線頂點D的坐標為

(2)∵直線y=2x+m經過點M(1,0),

0=2×1+m,解得m=2,

y=2x2,

(x1)(ax+2a2)=0,

解得x=1

N點坐標為

a<b,即a<2a

a<0,

如圖1,設拋物線對稱軸交直線于點E,

∵拋物線對稱軸為

設△DMN的面積為S,

(3)a=1時,

拋物線的解析式為:

解得:

G(1,2),

∵點G、H關于原點對稱,

H(1,2),

設直線GH平移后的解析式為:y=2x+t,

x2x+2=2x+t,

x2x2+t=0,

=14(t2)=0,

當點H平移后落在拋物線上時,坐標為(1,0),

(1,0)代入y=2x+t

t=2,

∴當線段GH與拋物線有兩個不同的公共點,t的取值范圍是

型】解答
束】
26

【題目】搖椅是老年人很好的休閑工具,右圖是一張搖椅放在客廳的側面示意圖,搖椅靜止時,以O為圓心OA為半徑的的中點P著地,地面NP與相切,已知AOB=60°,半徑OA=60cm,靠背CD與OA的夾角ACD=127°,C為OA的中點,CD=80cm,當搖椅沿滾動至點A著地時是搖椅向后的最大安全角度.

(1)靜止時靠背CD的最高點D離地面多高?

(2)靜止時著地點P至少離墻壁MN的水平距離是多少時?才能使搖椅向后至最大安全角度時點D不與墻壁MN相碰.

(精確到1cm,參考數(shù)據(jù)π取3.14,sin37°=0.60,cos37°=0.80,tan37°=0.75,sin67°=0.92,cos67°=0.39,tan67°=2.36, =1.41, =1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人站成一橫排照相因甲、乙兩人是好友,照相時兩人緊鄰著站在一起不分開

1請按左、中、右的順序列出所有符合要求的站位的結果

2按要求隨機的站立,求丙站在甲左邊的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點AB在反比例函數(shù)(x>0)的圖象上,它們的橫坐標分別為m,n,且m≠n,過點A,點B都向x軸,y軸作垂線段,其中兩條垂線段的交點為C

1)如圖,當m=2n=6時,直接寫出點C的坐標:

2)若A(m,n),B(nm).連接OA、OBAB,求△AOB的面積:(用含m的代數(shù)式表示)

3)設AD⊥y軸于點DBE⊥x軸于點E.若,且,則當點C在直線DE上時,求p的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,CO上一點AE和過點C的切線互相垂直,垂足為EAEO于點D,直線ECAB的延長線于點P連接AC,BC

1求證AC平分BAD;

2AB=6,AC=4ECPB的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一條長為2016個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按ABCD…的規(guī)律繞在ABCD的邊上,則細線另一端所在位置的點的坐標是( )

A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)

查看答案和解析>>

同步練習冊答案