【題目】在ABC 中, AB AC , BAC=100°,點 D 在 BC 上, ABD 和AFD 關(guān)于直線 AD 對稱, FAC 的平分線交 BC 于點 G,連接 FG 當BAD _________.時,DFG為等腰三角形.
【答案】10°,25°或40°
【解析】
由軸對稱可以得出△ADB≌△ADF,就可以得出∠B=∠AFD,AB=AF,在證明△AGF≌△AGC就可以得出∠AFG=∠C,就可以求出∠DFG=80°,當GD=GF時,就可以得出∠GDF═80°,根據(jù)∠ADG=40+θ,就有40°+80°+40°+θ+θ=180°就可以求出結(jié)論;當DF=GF時,就可以得出∠GDF=50°,就有40°+50°+40°+2θ=180°,當DF=DG時,∠GDF=20°,就有40°+20°+40°+2θ=180°,從而求出結(jié)論.
∵AB=AC,∠BAC=100°,
∴∠B=∠C=40°.
∵△ABD和△AFD關(guān)于直線AD對稱,
∴△ADB≌△ADF,
∴∠B=∠AFD=40°,AB=AF,∠BAD=∠FAD=θ,
∴AF=AC.
∵AG平分∠FAC,
∴∠FAG=∠CAG.
在△AGF和△AGC中,
,
∴△AGF≌△AGC(SAS),
∴∠AFG=∠C.
∵∠DFG=∠AFD+∠AFG,
∴∠DFG=∠B+∠C=40°+40°=80°.
當GD=GF時,
∴∠GDF=∠GFD=80°.
∵∠ADG=40°+θ,
∴40°+80°+40°+θ+θ=180°,
∴θ=10°.
當DF=GF時,
∴∠FDG=∠FGD.
∵∠DFG=80°,
∴∠FDG=∠FGD=50°.
∴40°+50°+40°+2θ=180°,
∴θ=25°.
當DF=DG時,
∴∠DFG=∠DGF=80°,
∴∠GDF=20°,
∴40°+20°+40°+2θ=180°,
∴θ=40°.
∴當θ=10°,25°或40°時,△DFG為等腰三角形
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,得到Cn,若點P(2017,m)在拋物線Cn上,則m為( )
A. 1 B. ﹣1 C. 2 D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結(jié)論:①DE=CD;②AD平分∠CDE;③∠BAC=∠BDE;④BE+AC=AB,其中正確的是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為6cm,動點P從A點出發(fā),在正方形的邊上由A→B→C→D運動,設(shè)運動的時間為t(s),△APD的面積為S(cm2),S與t的函數(shù)圖象如圖所示
(1)求點P在BC上運動的時間范圍;
(2)當t為何值時,△APD的面積為10cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應(yīng)點A2坐標為(-2,-6),請畫出平移后對應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-2x+4與x軸y軸相交于A,B兩點,點C在線段AB上,且∠COA=45°.
(1)求點A,B的坐標;
(2)求△AOC的面積;
(3)直線OC上有一動點D,過點D作直線l(不與直線AB重合)與x,y軸分別交于點E,F,當△OEF與△ABO全等時,求直線EF的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將九年級部分男生擲實心球的成績進行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.
(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數(shù)落在哪一組?扇形統(tǒng)計圖中D組對應(yīng)的圓心角是多少度?
(3)要從成績優(yōu)秀的學(xué)生中,隨機選出2人介紹經(jīng)驗,已知甲、乙兩位同學(xué)的成績均為優(yōu)秀,求他倆至少有1人被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點A(4,0),與y軸交于點B(0,-4),若點E在線段AB上,OE⊥OF,且OE=OF,連接AF.
(1)猜想線段AF與BE之間的關(guān)系,并證明;
(2)過點O作OM⊥EF垂足為D,OM分別交AF、BA的延長線于點C、M若BE=,求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com