【題目】某商場(chǎng)購(gòu)進(jìn)一批單價(jià)為4元的日用品.若按每件5元的價(jià)格銷(xiāo)售,每月能賣(mài)出3萬(wàn)件;若按每件6元的價(jià)格銷(xiāo)售,每月能賣(mài)出2萬(wàn)件,假定每月銷(xiāo)售件數(shù)y(件)與價(jià)格x(元/件)之間滿(mǎn)足一次函數(shù)關(guān)系.

1)試求yx之間的函數(shù)關(guān)系式;

2)當(dāng)銷(xiāo)售價(jià)格定為多少時(shí),才能使每月的利潤(rùn)最大?每月的最大利潤(rùn)是多少?

【答案】12)當(dāng)銷(xiāo)售價(jià)格定為6元時(shí),每月的利潤(rùn)最大,每月的最大利潤(rùn)為40000

【解析】解:(1)由題意,可設(shè)y=kx+b

把(5,30000),(6,20000)代入得:,解得:。

yx之間的關(guān)系式為:。

2)設(shè)利潤(rùn)為W,則

,

當(dāng)x=6時(shí),W取得最大值,最大值為40000元。

答:當(dāng)銷(xiāo)售價(jià)格定為6元時(shí),每月的利潤(rùn)最大,每月的最大利潤(rùn)為40000元。

1)利用待定系數(shù)法求得yx之間的一次函數(shù)關(guān)系式。

2)根據(jù)利潤(rùn)=(售價(jià)成本)×售出件數(shù),可得利潤(rùn)W與銷(xiāo)售價(jià)格x之間的二次函數(shù)關(guān)系式,然后求出其最大值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)x軸交于A(3,0),B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)M(,5)是拋物線(xiàn)上一點(diǎn),拋物線(xiàn)與拋物線(xiàn)關(guān)于y軸對(duì)稱(chēng),點(diǎn)A、B、M關(guān)于y軸的對(duì)稱(chēng)點(diǎn)分別為點(diǎn)A′、B′、M′

(1)求拋物線(xiàn)C1的解析式;

(2)過(guò)點(diǎn)M′M′Ex軸于點(diǎn)E,交直線(xiàn)A′C于點(diǎn)D,x軸上是否存在點(diǎn)P,使得以A′、D. P為頂點(diǎn)的三角形與AB′C相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱(chēng)點(diǎn)P為等值點(diǎn).例如點(diǎn)

(1,1),(-2,-2),(),…,都是等值點(diǎn).已知二次函數(shù)

圖象上有且只有一個(gè)等值點(diǎn) ,且當(dāng)mx≤3時(shí),函數(shù) 的最小值為-9,最大值為-1,則m的取值范圍是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一塊長(zhǎng)和寬分別為60厘米和40厘米的長(zhǎng)方形鐵皮,要在它的四角截去四個(gè)相等的小正方形,折成一個(gè)無(wú)蓋的長(zhǎng)方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某草莓種植大戶(hù),今年從草莓上市到銷(xiāo)售完需要20天,售價(jià)為15元/千克,成本y(元/千克)與第x天成一次函數(shù)關(guān)系,當(dāng)x=10時(shí),y=7,當(dāng)x=15時(shí),y=6.5

1)求成本y(元/千克)與第x天的函數(shù)關(guān)系式并寫(xiě)出自變量x的取值范圍;

2)求第幾天每千克的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?(利潤(rùn)=售價(jià)-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對(duì)角線(xiàn)翻折,會(huì)發(fā)現(xiàn)這其中還有更多的結(jié)論.

(發(fā)現(xiàn)與證明中,,將沿翻折至,連結(jié).

結(jié)論1重疊部分的圖形是等腰三角形;

結(jié)論2.

試證明以上結(jié)論.

(應(yīng)用與探究)

中,已知,,將沿翻折至,連結(jié).若以、、、為頂點(diǎn)的四邊形是正方形,求的長(zhǎng).(要求畫(huà)出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,點(diǎn)E是邊AC上一點(diǎn),線(xiàn)段BE垂直于∠BAC的平分線(xiàn)于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM

(1)求證: DMCE

(2)AD6BD8,DM2,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有6個(gè)質(zhì)地和大小均相同的球,每個(gè)球只標(biāo)有一個(gè)數(shù)字,將標(biāo)有3,4,5的三個(gè)球放入甲箱中,標(biāo)有4,5,6的三個(gè)球放入乙箱中.

(1)小宇從甲箱中隨機(jī)模出一個(gè)球,求摸出標(biāo)有數(shù)字是3的球的概率;

(2)小宇從甲箱中、小靜從乙箱中各自隨機(jī)摸出一個(gè)球,若小宇所摸球上的數(shù)字比小靜所摸球上的數(shù)字大1,則稱(chēng)小宇略勝一籌.請(qǐng)你用列表法(或畫(huà)樹(shù)狀圖)求小宇略勝一籌的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案