【題目】矩形的一個(gè)內(nèi)角平分線把矩形的一條邊分成長(zhǎng)為35兩部分,則該矩形的面積是__

【答案】4024.

【解析】

根據(jù)矩形性質(zhì)得出AD=BC,AB=CD,ADBC,求出AE=AB,分為當(dāng)AE=3AE=5兩種情況,求出即可.

∵四邊形ABCD是矩形,

AD=BC,AB=CDADBC,

∴∠AEB=EBC,

BE平分∠ABC,

∴∠ABE=EBC

∴∠AEB=ABE,

AE=AB

①當(dāng)AE=3,DE=5時(shí),AD=BC=3+5=8,

AB=CD=AE=3,

即矩形ABCD的面積是=8×3=24;

②當(dāng)AE=5DE=3時(shí),AD=BC=3+5=8

AB=CD=AE=5,

即矩形ABCD的面積是=8×5=40;

故答案為:4024.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀并理解下面的證明過程,并在每步后的括號(hào)內(nèi)填寫該步推理的依據(jù).如圖,已知.求證:

證明:在△ABC和△DCB中,

AB=DC(已知)

AC=DB(已知)

= ( )

∴△ABC≌△DCB( )

∴∠ABC=∠DCB,∠ACB=∠DBC( )

∴∠ABC-∠DBC=∠DCB-∠ACB即∠1=∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知∠ABC∠ACB的平分線相交于點(diǎn)F,過點(diǎn)FDF∥BC,交AB于點(diǎn)D,交AC于點(diǎn)E,若BD=4,DE=9,則線段CE的長(zhǎng)為( )

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,AB=3AC=4,點(diǎn)DBC的中點(diǎn),將ABD沿AD翻折得到AED,連CE

1)求證:AD=ED

2)連接BE,猜想BEC的形狀,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠BOC,OF平分∠AOC.

(1)∠AOB=90°∠AOC=30°,求∠EOF的度數(shù);

(2)∠AOB=,求∠EOF的度數(shù)(寫出求解過程);

(3)若將條件中“OE平分∠BOC,OF平分∠AOC.平分改為“∠EOB=∠COB,∠COF=∠COA”,且∠AOB=,求∠EOF的度數(shù)(寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格當(dāng)中,三角形的三個(gè)頂點(diǎn)都在格點(diǎn)上.直線與直線相交于點(diǎn)

1)畫出將三角形向右平移5個(gè)單位長(zhǎng)度后的三角形(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn)).

2)畫出三角形關(guān)于直線對(duì)稱的三角形(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn)).

3)畫出將三角形繞著點(diǎn)旋轉(zhuǎn)后的三角形(點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn)).

4)在三角形,中,三角形 與三角形 成軸對(duì)稱,三角形 與三角形 成中心對(duì)稱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】典典同學(xué)學(xué)完統(tǒng)計(jì)知識(shí)后,隨機(jī)調(diào)查了她家所在轄區(qū)若干名居民的年齡,將調(diào)查數(shù)據(jù)繪制成如下扇形和條形統(tǒng)計(jì)圖:

請(qǐng)根據(jù)以上不完整的統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)扇形統(tǒng)計(jì)圖中a=   ,b=   ;并補(bǔ)全條形統(tǒng)計(jì)圖;

(2)若該轄區(qū)共有居民3500人,請(qǐng)估計(jì)年齡在0~14歲的居民的人數(shù).

(3)一天,典典知道了轄區(qū)內(nèi)60歲以上的部分老人參加了市級(jí)門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結(jié)果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:

①若a+b+c=0,則b2﹣4ac>0;

②若方程兩根為﹣12,則2a+c=0;

③若方程ax2+c=0有兩個(gè)不相等的實(shí)根,則方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;

④若b=2a+c,則方程有兩個(gè)不相等的實(shí)根.其中正確的有( 。

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案