【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又余下一個四邊形,稱為第二次操作;……依次類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形,如圖1,平行四邊形中,若,則平行四邊形1階準菱形.

1)判斷與推理:

鄰邊長分別為23的平行四邊形是__________階準菱形;

小明為了剪去一個菱形,進行如下操作:如圖2,把平行四邊形沿著折疊(點上)使點落在邊上的點,得到四邊形,請證明四邊形是菱形.

2)操作、探究與計算:

已知平行四邊形的鄰邊分別為1裁剪線的示意圖,并在圖形下方寫出的值;

已知平行四邊形的鄰邊長分別為,滿足,請寫出平行四邊形是幾階準菱形.

【答案】1)① 2,②證明見解析;(2)①見解析,②ABCD10階準菱形.

【解析】

1)①根據(jù)鄰邊長分別為23的平行四邊形經過兩次操作,即可得出所剩四邊形是菱形,即可得出答案;
②根據(jù)平行四邊形的性質得出AEBF,進而得出AE=BF,即可得出答案;
2)①利用3階準菱形的定義,即可得出答案;
②根據(jù)a=6b+rb=5r,用r表示出各邊長,進而利用圖形得出ABCD是幾階準菱形.

解:(1)①利用鄰邊長分別為23的平行四邊形經過兩次操作,所剩四邊形是邊長為1的菱形,
故鄰邊長分別為23的平行四邊形是2階準菱形;
故答案為:2;
②由折疊知:∠ABE=FBE,AB=BF,
∵四邊形ABCD是平行四邊形,
AEBF,
∴∠AEB=FBE,
∴∠AEB=ABE,
AE=AB,
AE=BF
∴四邊形ABFE是平行四邊形,
∴四邊形ABFE是菱形;

2)①如圖所示:
,
②答:10階菱形,
a=6b+r,b=5r
a=6×5r+r=31r;
如圖所示:

ABCD10階準菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,是對角線,以為邊向四邊形內部作正方形,連接,則的長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了掌握我市中考模擬數(shù)學考試卷的命題質量與難度系數(shù),調研老師在我市某地選取一個水平相當?shù)某跞昙夁M行調研,將隨機抽取的部分學生成績(得分為整數(shù),滿分為150分)分為5組(從左到右的順序).統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.觀察圖形的信息,回答下列問題:

1)本次調查共隨機抽取了該年級___________名學生,考試成績120分以上(含120分)學生有_________名;

2)規(guī)定:成績位于前5%的可獲得小禮品一份,在被調查的學生中,某位學生成績?yōu)?/span>134分,試判斷他是否能獲獎,說明理由;

3)如果第一組中只有一名是女生,第五組中只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機選出一名同學談談做題的感想…,請你用列表或畫樹狀圖的方法求出所選兩名學生剛好是一名女生和一名男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ACBD交于點E,點EBD的中點,延長CD到點F,使DFCD,連接AF

1)求證:AECE;

2)求證:四邊形ABDF是平行四邊形;

3)若AB2,AF4,∠F30°,則四邊形ABCF的面積為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為紀念建國70周年,某校舉行班級歌詠比賽,歌曲有:《我愛你,中國》,《歌唱祖國》,《我和我的祖國》(分別用字母AB,C依次表示這三首歌曲).比賽時,將A,B,C這三個字母分別寫在3張無差別不透明的卡片正面上,洗勻后正面向下放在桌面上,八(1)班班長先從中隨機抽取一張卡片,放回后洗勻,再由八(2)班班長從中隨機抽取一張卡片,進行歌詠比賽.

1)八(1)班抽中歌曲《我和我的祖國》的概率是__________;

2)試用畫樹狀圖或列表的方法表示所有可能的結果,并求出八(1)班和八(2)班抽中不同歌曲的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限,點Bx軸的正半軸上.∠OAB90°OAAB,OB,OC的長分別是二元一次方程組的解(OBOC).

1)求點A和點B的坐標;

2)點P是線段OB上的一個動點(點P不與點O,B重合),過點P的直線ly軸平行,直線l交邊OA或邊AB于點Q,交邊OC或邊BC于點R.設點P的橫坐標為t,線段QR的長度為m.已知t4時,直線l恰好過點C

①當0t3時,求m關于t的函數(shù)關系式;

②當m時,求點P的橫坐標t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BDAE于點F,延長AE至點C,使得FC=BC,連接BC

(1)求證:BC是⊙O的切線;

(2)O的半徑為5,tanA=,求FD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點EAC的中點.

1)試判斷直線DE與⊙O的位置關系,并說明理由;

2)若⊙O的半徑為2,∠B50°,AC6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知二次函數(shù)yax2+bx+c的圖象與x交于A,B兩點,與y軸交于點C,對稱軸為直線x1.直線y=﹣x+c與拋物線yax2+bx+c交于C,D兩點,D點在x軸下方且橫坐標小于3,則下列結論錯誤的是(  )

A.2a+b+c0

B.a<﹣1

C.xax+b)≤a+b

D.雙曲線y的兩分支分別位于第一、第三象限

查看答案和解析>>

同步練習冊答案