【題目】如圖,AD為⊙O直徑,作⊙O的內(nèi)接正三角形ABC,下列作法錯(cuò)誤的是( )
A.作OD的中垂線,交⊙O于B,C,連結(jié)AB,AC;
B.以D點(diǎn)為圓心,OD長(zhǎng)為半徑作圓弧,交圓于點(diǎn)B,C,連結(jié)AB, BC,CA;
C.以A點(diǎn)為圓心,AO長(zhǎng)為半徑作圓弧,交圓于點(diǎn)E,F,再分別以E,F為圓心,AO長(zhǎng)為半徑作圓弧,交圓于不同于點(diǎn)A的兩點(diǎn)B,C,連結(jié)AB,BC,CA
D.作AD的中垂線,交⊙O于B,C,連結(jié)AB,AC
【答案】D
【解析】
直接利用等邊三角形的判定與性質(zhì)分別分析得出答案.
連接OB、OC,如圖1.
由作圖可知:BC是半徑OD的垂直平分線,
∵AD為⊙O的直徑,
∴,,,
∴AB=AC.
在Rt△OEC中,
∴,
∴∠EOC=60°,
∴∠BOC=120°,
∴∠BAC=60°,
∴△ABC是等邊三角形,故A作圖正確,不符合題意;
如圖2,連接DB、DC.
由作圖可知:DB=DO=DC,
在⊙O中,OB=OD=OC,
∴△OBD和△OCD都是等邊三角形,
∴∠ODB=∠ODC=60°,
∵,
∴∠ODB=∠ACB=∠ABC=∠ODC=60°,
∴△ABC是等邊三角形, 故B作圖正確,不符合題意;
連接AE,EO,BE,BO,AF,FO,CO,CF,
由作圖可知:AE=EO=BE=BO=AF=FO=CO=CF=AO,
∴△OAE、△OBE、△OAF、△OCF都是等邊三角形,
∴∠AOB=∠AOC=60°+60°=120°,
∴∠BOC=360°-∠AOB=∠AOC=120°,
∵BO =CO =AO,
∴△AOB△AOC△BOC,
∴AB=AC=BC,
∴△ABC是等邊三角形, 故C作圖正確,不符合題意;
由作圖可知:OB=OC=OA=OD,
∴△ABC是等腰直角三角形,故D作圖錯(cuò)誤,符合題意.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為的直徑,于,點(diǎn)是弧上的任一點(diǎn),過點(diǎn)作的切線交于點(diǎn).連接交于.
(1)求證:;
(2)填空:①當(dāng)_____時(shí),四邊形是正方形;
②當(dāng)_____時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB是半圓的直徑,圖1中,點(diǎn)C在半圓外;圖2中,點(diǎn)C在半圓內(nèi),請(qǐng)僅用無刻度的直尺按要求畫圖.
(1)在圖1中,畫出△ABC的三條高的交點(diǎn);
(2)在圖2中,畫出△ABC中AB邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=-x2+mx+m+1(其中m為常數(shù))
(1)該函數(shù)的圖象與X軸公共點(diǎn)的個(gè)數(shù)是______個(gè)
(2)若該函數(shù)的圖象的對(duì)稱軸是直線X=1,頂點(diǎn)為點(diǎn)A,求此時(shí)函數(shù)的解析式及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y1=ax+b的圖像與反比例函數(shù)的圖像交于點(diǎn)A(2,4)和B(-4,m).
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)過點(diǎn)B做BE//x軸,于點(diǎn)D,點(diǎn)C是直線BE上一點(diǎn),若AC=2BC,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,D是AB邊上一點(diǎn),以BD為直徑的⊙O與邊AC有公共點(diǎn)E,連結(jié)DE并延長(zhǎng),與BC的延長(zhǎng)線交于點(diǎn)F ,BD=BF.
(1)求證:AC是⊙O的切線;
(2)若∠F=60°,BF=8,求CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解九年級(jí)學(xué)生體育測(cè)試成績(jī)情況,以九年級(jí)(1)班學(xué)生的體育測(cè)試成績(jī)?yōu)闃颖,按B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:(說明:A級(jí):90分﹣100分;B級(jí):75分﹣89分;C級(jí):60分~74分;D級(jí):60分以下)
(1)求出D級(jí)學(xué)生的人數(shù)占全班總?cè)藬?shù)的百分比;
(2)求出扇形統(tǒng)計(jì)圖(圖2)中C級(jí)所在的扇形圓心角的度數(shù);
(3)若該校九年級(jí)學(xué)生共有500人,請(qǐng)你估計(jì)這次考試中A級(jí)和B級(jí)的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,給出以下結(jié)論: ①;②;③ ;④.其中正確結(jié)論的序號(hào)是( )
A.③④B.②④C.②③D.①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com