【題目】如圖1是2019年4月份的日歷,現用一長方形在日歷表中任意框出4個數(如圖2),下列表示a,b,c,d之間關系的式子中不正確的是( )
A. a﹣d=b﹣cB. a+c+2=b+dC. a+b+14=c+dD. a+d=b+c
【答案】A
【解析】
觀察日歷中的數據,用含a的代數式表示出b,c,d的值,再將其逐一代入四個選項中,即可得出結論.
解:依題意,得:b=a+1,c=a+7,d=a+8.
A、∵a﹣d=a﹣(a+8)=﹣8,b﹣c=a+1﹣(a+7)=﹣6,
∴a﹣d≠b﹣c,選項A符合題意;
B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+8)=2a+9,
∴a+c+2=b+d,選項B不符合題意;
C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+8)=2a+15,
∴a+b+14=c+d,選項C不符合題意;
D、∵a+d=a+(a+8)=2a+8,b+c=a+1+(a+7)=2a+8,
∴a+d=b+c,選項D不符合題意.
故選:A.
科目:初中數學 來源: 題型:
【題目】已知△ABC三條邊的長度分別是,,,記△ABC的周長為C△ABC.
(1)當x=2時,△ABC的最長邊的長度是 (請直接寫出答案);
(2)請求出C△ABC(用含x的代數式表示,結果要求化簡);
(3)我國南宋時期數學家秦九韶曾提出利用三角形的三邊長求面積的秦九韶公式:S=.其中三角形邊長分別為a,b,c,三角形的面積為S.
若x為整數,當C△ABC取得最大值時,請用秦九韶公式求出△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了增強抗旱能力,保證今年夏糧豐收,某村新修建了一個蓄水池,這個蓄水池安裝了兩個進水管和一個出水管(兩個進水管的進水速度相同)一個進水管和一個出水管的進出水速度如圖(1)所示,某天0點到6點(至少打開一個水管),該蓄水池的蓄水量如圖(2)所示,并給出以下三個論斷:①0點到1點不進水,只出水;②1點到4點不進水,不出水;③4點到6點只進水,不出水.則一定正確的論斷是( )
A.①③B.②③C.③D.①②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某超市推出如下購物優(yōu)惠方案:一次性購物在80元不含80元以內時,不享受優(yōu)惠;一次性購物在80元含80元以上,300元不含300元以內時,一律享受九折的優(yōu)惠;一次性購物在300元含300元以上時,一律享受八折的優(yōu)惠,某顧客在本超市兩次購物分別付款65元、252元,如果他改成在本超市一次性購買與上兩次完全相同的商品,則應付款
A. 316元 B. 304元或316元 C. 276元 D. 276元或304元
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA,OC分別在x軸、y軸上,點B坐標為(4,t)(t>0),二次函數y=x2+bx(b<0)的圖象經過點B,頂點為點D.
(1)當t=12時,頂點D到x軸的距離等于;
(2)點E是二次函數y=x2+bx(b<0)的圖象與x軸的一個公共點(點E與點O不重合),求OEEA的最大值及取得最大值時的二次函數表達式;
(3)矩形OABC的對角線OB、AC交于點F,直線l平行于x軸,交二次函數y=x2+bx(b<0)的圖象于點M、N,連接DM、DN,當△DMN≌△FOC時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC和BD相交于點O,點E是BC的中點,連結AE,若∠ABC=60°,BE=2cm,求:
(1)菱形ABCD的周長;
(2)菱形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在平面上四點A,B,C,D,按下列要求畫出圖形;
(1)射線AB,直線CB;
(2)取線段AB的中點E,連接DE并延長與直線CB交于點O;
(3)在所畫的圖形中,若AB=6,BE=BC=OB,求OC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D是邊BC上一動點(不與B,C重合),DE⊥AB于點E,點F是線段AD的中點,連接EF,CF.
(1)試猜想線段EF與CF的大小關系,并加以證明.
(2)若∠BAC=30°,連接CE,在D點運動過程中,探求CE與AD的數量關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com