【題目】如圖,在菱形ABCD中,,點E在邊CD上,且,與關(guān)于AE所在的直線成對稱圖形以點A為中心,把順時針旋轉(zhuǎn),得到,連接GF,則線段GF的長為______.
【答案】
【解析】
連接BE,作BH⊥CD于H,先證△BAE≌△FAG,得到BE=GF,在Rt△BCH中,由∠C=60°得出CH=4,BH2=48,再在Rt△BEH中,利用勾股定理即可求出BE的長即可得解.
解:如圖,連接BE,作BH⊥CD于H,則∠BHC=90°,
由題意可知,菱形ABCD中,AB=BC=CD=AD=8,DE=6,∠C=∠DAB,
由旋轉(zhuǎn)知識可知,∠DAB=60°,AE=AG,∠DAE=∠BAG,
由對稱知識可知,AD=AF,∠DAE=∠FAE,
∴∠C=∠DAB=60°,EC=CD-DE=8-6=2,AB=AF,∠FAE=∠BAG,
∴∠FAE+∠BAF=∠BAG+∠BAF,即∠BAE=∠FAG,
∴△BAE≌△FAG,
∴BE=GF,
∵∠BHC=90°,∠C=60°,
∴CH=BC·cos60°=8×=4,
∴HE=CH-CE=4-2=2,BH2=BC2-CH2=82-42=48,
∴GF=BE===.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCO放在直角坐標系中,其中頂點B的坐標為(10, 8),E是BC邊上一點將△ABE沿AE折疊,點B剛好與OC邊上點D重合,過點E的反比例函數(shù)y=的圖象與邊AB交于點F, 則線段AF的長為( )
A. B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,E為AC邊的一點,F為AB邊上一點,連接CF,交BE于點D,且∠ACF=∠CBE,CG平分∠ACB交BD于點G,
(1)如圖1,求證:CF=BG;
(2)如圖2,延長CG交AB于H,連接AG,過點C作CP∥AG交BE的延長線于點P,
求證:PB=CP+CF;
(3)如圖3,在(2)間的條件下,當∠GAC=2∠FCH時,若S△AEG=3,BG=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班為滿足同學們課外活動的需求,要求購排球和足球若干個.已知足球的單價比排球的單價多元,用元購得的排球數(shù)量與用元購得的足球數(shù)量相等.
⑴排球和足球的單價各是多少元?
⑵若恰好用去元,有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在正方形ABCD中,以AB為邊向正方形外作等邊三角形ABE,連接CE、BD交于點G,連接AG,那么∠AGD的底數(shù)是______度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為6的正方形ABCD內(nèi)部有一點P,BP=4,∠PBC=60°,點Q為正方形邊上一動點,且△PBQ是等腰三角形,則符合條件的Q點有__________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學在一次用頻率去估計概率的實驗中統(tǒng)計了某一結(jié)果出現(xiàn)的頻率,繪出的統(tǒng)計圖如圖所示,則符合這一結(jié)果的實驗可能是( )
A.從一裝有2個白球和1個紅球的袋子中任取一球,取到紅球的概率
B.擲一枚正六面體的骰子,出現(xiàn)1點的概率
C.拋一枚硬幣,出現(xiàn)正面的概率
D.任意寫一個整數(shù),它能被2整除的概率
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形ABCD中,動點F,E分別以相同的速度從D,C兩點同時出發(fā)向C和B運動(任何一個點到達即停止),過點P作PM∥CD交BC于M點,PN∥BC交CD于N點,連接MN,在運動過程中,則下列結(jié)論:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PEBF;⑤線段MN的最小值為.其中正確的結(jié)論有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC的三個頂點的坐標分別為A(-3,2)、B(0,4)、C(0,2).
⑴將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的△A1B1C.平移△ABC,若A對應點A2的坐標為(0,-4),畫出平移后對應的△A2B2C2;
⑵若將△A1B1C繞某一點旋轉(zhuǎn)得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標為 .
⑶在x軸上找一點P,使得直線CP將△ABC的面積分為1:2,直接寫出P點的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com