【題目】如圖,四邊形ABCD是平行四邊形,ABBC=2,ABC=30°,點E是射線DA上一動點,把CDE沿CE折疊,點D的對應點為D,連接DB.DBC為等邊三角形,則DE____________

【答案】2-2或+1

【解析】先判斷ABCD是菱形,根據(jù)菱形的性質(zhì)可得D=ABC=30°,BCD=150°,然后根據(jù)△DBC為等邊三角形,可得∠BCD′=60°,然后根據(jù)折疊的性質(zhì)可得DCE≌△DCE進而可得∠DCE=45°,然后過點EEFCD,垂足為F,然后解直角三角形DEF即可求出DE的值.

①如圖(1)所示當點E在邊AD上時 ∵四邊形ABCD是平行四邊形,ABBC2,∴四邊形ABCD是菱形

AB=2,ABC=30°,CD=AB=2,D=A=30°,BCD=150°.

∵△DBC為等邊三角形∴∠BCD′=60°,∴∠DCD′=90°.

∵△CDE沿CE折疊,得到△CDE,∴△DCE≌△DCE,∴∠DCE=DCD′=45°,過點EEFCD,垂足為F則∠CFE=90°,∴∠CEF=DCE=45°,CF=EF.在RtDEF,D=30°,EF=DE,EF=x,DE=2xCF=x,由勾股定理可得FD=x

CF+FD=CD=2x+=2,解得x=DE=2x=22

②當點EDA的延長線上時,如圖(2),過點BBFAD,DA的延長線于點F由折疊可知∠EDC=D=30°,又∠BDC=60°,所以DE為∠BDC的平分線

BDC是等邊三角形,∴DEBC

ADBC,∴DEAD

ABC=30°,∴BAF=30°.

AB=2,∴AD=,DEBC的交點為G,則易知EF=BG=BC=1

AE=1,∴DE=+1

故答案為:22+1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個倉庫共存有糧食60解決下列問題,3個小題都要寫出必要的解題過程:

1甲倉庫運進糧食14,乙倉庫運出糧食10后,兩個倉庫的糧食數(shù)量相等.甲、乙兩個倉庫原來各有多少糧食?

2如果甲倉庫原有的糧食比乙倉庫的2倍少3,則甲倉庫運出多少糧食給乙倉庫,可使甲、乙兩倉庫糧食數(shù)量相等?

3甲乙兩倉庫同時運進糧食,甲倉庫運進的數(shù)量比本倉庫原存糧食數(shù)量的一半多1,乙倉庫運進的數(shù)量是本倉庫原有糧食數(shù)量加上8所得的和的一半求此時甲、乙兩倉庫共有糧食多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(新知理解)

如圖,點C在線段AB上,若BC=πAC,則稱點C是線段AB的圓周率點,線段AC、BC稱作互為圓周率伴侶線段.

(1)若AC=3,求AB;

(2)若點D也是圖中線段AB的圓周率點(不同于點C),判斷AC,BD的等量關系;

(解決問題)

如圖,現(xiàn)有一個直徑為1個單位長度的圓片,將圓片上的某點與數(shù)軸上表示1的點重合,并把圓片沿數(shù)軸向右無滑動地滾動1周,該點到達點C的位置.

(3)若點M、N是線段OC的圓周率點,求MN的長;

(4)圖中,若點D在射線OC上,且線段CD與以O、C、D中某兩個點為端點的線段互為圓周率伴侶線段,請直接寫出點D所表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,AB=20,AC=15,BC邊上的高為12,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOB是一鋼架,AOB=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH…添的鋼管長度都與OE相等,則最多能添加這樣的鋼管( )根.

A. 2 B. 4 C. 5 D. 無數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC.

(1)ABC的角平分線AD(尺規(guī)作圖,保留痕跡);

(2)AD的延長線上任取一點E,連接BE,CE.

①求證:BDE≌△CDE;

②當AE=2AD時,四邊形ABEC是平行四邊形嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,A、B在數(shù)軸上對應的數(shù)分別用、表示,且.

(1)數(shù)軸上點A表示的數(shù)是   ,點B表示的數(shù)是 

(2)若一動點P從點A出發(fā),以3個單位長度/秒速度由A向B運動;動點Q從原點O出發(fā),以1個單位長度/秒速度向B運動,點P、Q同時出發(fā),點Q運動到B點時兩點同時停止.設點Q運動時間為t秒.

若P從A到B運動,則P點表示的數(shù)為 ,Q點表示的數(shù)為 .用含的式子表示)

②當t為何值時,點P與點Q之間的距離為2個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD,OF平分∠COE.

(1)若∠AOC=76°,求∠BOF的度數(shù);

(2)若∠BOF=36°,求∠AOC的度數(shù);

(3)若|∠AOC﹣BOF|=α°,請直接寫出∠AOC和∠BOF的度數(shù).(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過y軸上一點P(0,1)作平行于x軸的直線PB,分別交函數(shù)y1=x2(x≥0)與y2= (x≥0)的圖象于A1 , B1兩點,過點B1作y軸的平行線交y1的圖象于點A2 , 再過A2作直線A2B2∥x軸,交y2的圖象于點B2 , 依次進行下去,連接A1A2 , B1B2 , A2A3 , B2B3 , …,記△A2A1B1的面積為S1 , △A2B1B2的面積為S2 , △A3A2B2的面積為S3 , △A3B2B3的面積為S4 , …則S2016=

查看答案和解析>>

同步練習冊答案