【題目】先閱讀理解下面的例題,再按要求解答下列問(wèn)題:

例題:求代數(shù)式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代數(shù)式m2+m+4的最小值;

(2)求代數(shù)式4﹣x2+2x的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)15m)的空地上建一個(gè)長(zhǎng)方形花園ABCD,花園一邊靠墻,另三邊用總長(zhǎng)為20m的柵欄圍成.如圖,設(shè)AB=x(m),請(qǐng)問(wèn):當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?

【答案】(1);(2)5;(3)當(dāng)x=5m時(shí),花園的面積最大,最大面積是50m2

【解析】試題分析:(1)、將原式進(jìn)行配方,然后根據(jù)非負(fù)數(shù)的性質(zhì)得出最小值;(2)、將原式進(jìn)行配方,然后根據(jù)非負(fù)數(shù)的性質(zhì)得出最大值;(2)、根據(jù)題意得出代數(shù)式,然后進(jìn)行配方得出最值.

試題解析:(1)、m2+m+4=m+2+m+2≥0, m+2+,

m2+m+4的最小值是;

(2)、4﹣x2+2x=﹣x﹣12+5, ∵﹣x﹣12≤0, ∴﹣x﹣12+5≤5,

4﹣x2+2x的最大值為5;

(3)、由題意,得花園的面積是x20﹣2x=﹣2x2+20x

∵﹣2x2+20x=﹣2x﹣52+50=﹣2x﹣52≤0, ∴﹣2x﹣52+50≤50,

∴﹣2x2+20x的最大值是50,此時(shí)x=5, 則當(dāng)x=5m時(shí),花園的面積最大,最大面積是50m2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)十位數(shù)字是a,個(gè)位數(shù)學(xué)是b的兩位數(shù)表示為10a+b,交換這個(gè)兩位數(shù)的十位數(shù)字和個(gè)位數(shù)字,又得一個(gè)新的兩位數(shù),它是_____,這兩個(gè)數(shù)的差是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x、y的多項(xiàng)式(m2+n+3xy2+3xy5

1)若原多項(xiàng)式是五次多項(xiàng)式m、n的值;

2)若原多項(xiàng)式是五次四項(xiàng)式,mn的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)寫(xiě)出一個(gè)滿(mǎn)足條件的m的值,并求此時(shí)方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為滿(mǎn)足市場(chǎng)需求,新生活超市在端午節(jié)前夕購(gòu)進(jìn)價(jià)格為3/個(gè)的某品牌粽子,根據(jù)市場(chǎng)預(yù)測(cè),該品牌粽子每個(gè)售價(jià)4元時(shí),每天能出售500個(gè),并且售價(jià)每上漲0.1元,其銷(xiāo)售量將減少10個(gè),為了維護(hù)消費(fèi)者利益,物價(jià)部門(mén)規(guī)定,該品牌粽子售價(jià)不能超過(guò)進(jìn)價(jià)的200%,請(qǐng)你利用所學(xué)知識(shí)幫助超市給該品牌粽子定價(jià),使超市每天的銷(xiāo)售利潤(rùn)為800元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家規(guī)定存款利息的納稅辦法是:利息稅=利息×5%;銀行一年定期儲(chǔ)蓄的年利率為2.25%,今年小剛?cè)〕鲆荒甑狡诘谋窘鸺袄r(shí),交了4.5元的利息稅,則小剛一年前存入銀行的錢(qián)為(
A.2400元
B.1800元
C.4000元
D.4400元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式6a2b9ab2a3的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①A、E、F、C在一條直線上,AE=CF,過(guò)E、F分別作DE⊥AC,B F⊥AC,若AB=CD.

(1)圖①中有    對(duì)全等三角形,并把它們寫(xiě)出來(lái).

(2)求證:G是BD的中點(diǎn).

(3)若將△ABF的邊AF沿GA方向移動(dòng)變?yōu)閳D②時(shí),其余條件不變,第(2)題中的結(jié)論是否成立?如果成立,請(qǐng)予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,若點(diǎn)P坐標(biāo)為(2,-3),則它位于第幾象限

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案