【題目】如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設移動時間為t秒.
(1)當t=3時,求l的解析式;
(2)若點M,N位于l的異側,確定t的取值范圍;
(3)直接寫出t為何值時,點M關于l的對稱點落在坐標軸上.
【答案】
(1)解:直線y=-x+b交y軸于點P(0,b),
由題意,得b>0,t≥0,b=1+t.
當t=3時,b=4,
故y=-x+4.
(2)解:當直線y=-x+b過點M(3,2)時,
2=-3+b,
解得:b=5,
5=1+t,
解得t=4.
當直線y=-x+b過點N(4,4)時,
4=-4+b,
解得:b=8,
8=1+t,
解得t=7.
故若點M,N位于l的異側,t的取值范圍是:4<t<7.
(3)解:如圖,過點M作MF⊥直線l,交y軸于點F,交x軸于點E,則點E、F為點M在坐標軸上的對稱點.
過點M作MD⊥x軸于點D,則OD=3,MD=2.
已知∠MED=∠OEF=45°,則△MDE與△OEF均為等腰直角三角形,
∴DE=MD=2,OE=OF=1,
∴E(1,0),F(xiàn)(0,-1).
∵M(3,2),F(xiàn)(0,-1),
∴線段MF中點坐標為( , ).
直線y=-x+b過點( , ),則 =- +b,解得:b=2,
2=1+t,
解得t=1.
∵M(3,2),E(1,0),
∴線段ME中點坐標為(2,1).
直線y=-x+b過點(2,1),則1=-2+b,解得:b=3,
3=1+t,
解得t=2.
故點M關于l的對稱點,當t=1時,落在y軸上,當t=2時,落在x軸上.
【解析】(1)利用直線的平移規(guī)律,上加下減,可求出解析式;(2)l令直線y=-x+b過點M、N,求出這兩個臨界點對應的t值,t的范圍就是介于這兩個值之間;(3)坐標軸包括x、y軸,分兩類,利用軸對稱的性質,求出t值.
科目:初中數(shù)學 來源: 題型:
【題目】某通訊公司推出甲、乙兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關系如圖所示.
(1)有月租費的收費方式是(填甲或乙),月租費是元;
(2)求出甲、乙兩種收費方式中y與自變量x之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A、B兩地相距120千米,甲騎自行車以20千米/時的速度由起點A前往終點B,乙騎摩托車以40千米/時的速度由起點B前往終點A.兩人同時出發(fā),各自到達終點后停止.設兩人之間的距離為s(千米),甲行駛的時間為t(小時),則下圖中正確反映s與t之間函數(shù)關系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E、F分別是□ABCD的邊BC、AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的直徑CD垂直于弦AB,垂足為點E,∠ACD=22.5°,若CD=6cm,則AB的長為( 。
A. 4cm B. 3cm C. 2cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“知識改變命運,科技繁榮祖國.”為提升中小學生的科技素養(yǎng),我區(qū)每年都要舉辦中小學科技節(jié).為迎接比賽,某校進行了宣傳動員并公布了相關項目如下:
A——桿身橡筋動力模型;B——直升橡筋動力模型;C——空轎橡筋動力模型.右圖為該校報名參加科技比賽的學生人數(shù)統(tǒng)計圖.
(1)該校報名參加B項目學生人數(shù)是 人;
(2)該校報名參加C項目學生人數(shù)所在扇形的圓心角的度數(shù)是 °;
(3)為確定參加區(qū)科技節(jié)的學 生人選,該校在集訓后進行了校內選拔賽,最后一輪復賽,決定在甲、乙2名候選人中選出1人代表學校參加區(qū)科技節(jié)B項目的比賽,每人進行了4次試飛,對照一定的標準,判分如下:甲:80,70,100,50;乙:75,80,75,70.如果你是教練,請你用學過的數(shù)學統(tǒng)計量分析派誰代表學校參賽?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com