【題目】如圖,點C是⊙O的直徑AB延長線上一點,過⊙O上一點D作DF⊥AB于F,交⊙O于點E,點M是BE的中點,AB=4,∠E=∠C=30°.
(1)求證:CD是⊙O的切線;
(2)求DM的長.
【答案】(1)見解析;(2)
【解析】
(1)連接OD,由圓周角定理得出∠DOC=2∠E=60°,∠ODC=180°﹣(∠DOC+∠C)=90°,即可得出結(jié)論;
(2)連接OE、OM,證明∠DOC=∠COE=60°,由OB=OE,點M是BE的中點,得出∠BOM=∠COE=30°,OM⊥BE,則∠DOM=∠DOC+∠BOM=90°,OM=OBcos∠BOM=,由勾股定理得DM==.
(1)證明:連接OD,如圖1所示:
∵∠E=30°,
∴∠DOC=2∠E=60°,
∴∠DOC+∠C=60°+30°=90°,
∴∠ODC=180°﹣(∠DOC+∠C)=180°﹣90°=90°,即OD⊥CD,
∵OD是⊙O的半徑,
∴CD是⊙O的切線;
(2)解:連接OE、OM,如圖2所示:
∵⊙O的直徑AB,AB=4,
∴OB=OD=2,
∵OD=OE,DF⊥AB,
∴∠DOC=∠COE=60°,
∵OB=OE,點M是BE的中點,
∴∠BOM=∠COE=30°,OM⊥BE,
∴∠DOM=∠DOC+∠BOM=60°+30°=90°,
∵在Rt△OMB中,∠OMB=90°,
∴OM=OBcos∠BOM=2cos30°=2×=,
由勾股定理得:DM===.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明投擲一次骰子,向上一面的點數(shù)記為,再投擲一次骰子,向上一面的點數(shù)記為,這樣就確定點的一個坐標,那么點落在雙曲線上的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c經(jīng)過點A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的解析式;
(2)如圖1,P為線段BC上一點,過點P作y軸平行線,交拋物線于點D,當△BDC的面積最大時,求點P的坐標;
(3)如圖2,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=8,BC=16,點D在邊BC上,點E在邊AB上,沿DE將△ABC折疊,使點B與點A重合,連接AD,點P是線段AD上一動點,當半徑為5的⊙P與△ABC的一邊相切時,AP的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 兩點的坐標分別為,點分別是直線和x軸上的動點,,點是線段的中點,連接交軸于點;當⊿面積取得最小值時,的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接△ABC中,∠CAB=90°,AB=2AC,過點A作BC的垂線m交⊙O于另一點D,垂足為H,點E為上異于A,B的一個動點,射線BE交直線m于點F,連接AE,連接DE交BC于點G.
(1)求證:△FED∽△AEB;
(2)若=,AC=2,連接CE,求AE的長;
(3)在點E運動過程中,若BG=CG,求tan∠CBF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接疫情徹底結(jié)束后的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表
運動鞋價格 | 甲 | 乙 |
進價(元/雙) | ||
售價(元/雙) |
已知:用元購進甲種運動鞋的數(shù)量與用元購進乙種運動鞋的數(shù)量相同.
求的值;
要使購進的甲、乙兩種運動鞋共雙的總利潤(利潤售價進價)不少于元,且甲種運動鞋的數(shù)量不超過雙,問該專賣店共有幾種進貨方案;
在的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應(yīng)如何進貨?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com