【題目】如圖,矩形ABCD中,AB=3,BC=5,CD上一點E,連接AE,將△ADE繞點A旋轉(zhuǎn)90°得△AFG,連接EGDF

1)畫出圖形;

2)若EGDF交于BC邊上同一點H,且△GFH是等腰三角形,試計算CE長.

【答案】1)見解析;(2CE=3-

【解析】

1)根據(jù)題意作圖即可;

2)根據(jù)旋轉(zhuǎn)的性質(zhì)得到DE=FG,△ADF、△BHF是等腰直角三角形,故求出FH=,再根據(jù)等腰三角形的性質(zhì)得到GF=FH==DE,故可求出CE的長.

解:(1)如圖所示:

2)由旋轉(zhuǎn)得,AD=AF=5,DE=GF

∵∠BAD=90°

∴△ADF為等腰直角三角形,

∴AB、F在同一直線上

∴BF=2=BH

∴△BHF為等腰直角三角形,

∴HF==,

∵△GFH是等腰三角形且∠GFH=90°+45°=135°

∴GF=FH==DE

∵CD=AB=3

∴CE=CD-DE=3-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:的角平分線,點,分別在,上,且,

1)如圖1,求證:四邊形是平行四邊形;

2)如圖2,若為等邊三角形,在不添加輔助線的情況下,請你直接寫出所有的全等三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學(xué)興趣小組利用無人機在五峰山隧道正上空點P處測得黃石大橋西端點A的俯角為30°,東端點B(隧道西進(jìn)口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長175米,隧道BC的長約多少米(計算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個人進(jìn)行游戲:在一個不透明的口袋中裝有4張相同的紙牌,它們分別標(biāo)有數(shù)字12,3,從中隨機摸出一張紙牌然后放回,再隨機摸出一張紙牌,若兩次摸出的紙牌上數(shù)字之和是3的倍數(shù),則甲得1分;否則乙得1分.這是個公平的游戲嗎?請說明理由;若不公平,請你修改規(guī)則使該游戲?qū)﹄p方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°C處,則該船行駛的速度為____________海里/時.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC頂點的坐標(biāo)分別為A(﹣3,3),B(﹣5,2),C(﹣11).

1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為12,且ABC位于點C的異側(cè),并表示出點A1的坐標(biāo).

2)作出△ABC繞點C順時針旋轉(zhuǎn)90°后的圖形△A2B2C

3)在(2)的條件下求出點B經(jīng)過的路徑長(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AGBC于點G,AFDE于點F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E為半圓O直徑AB上一動點,AB6C為半圓上一定點,連接ACBC,AD平分∠CABBC于點D,連接CEDE.小紅根據(jù)學(xué)習(xí)函數(shù)經(jīng)驗,分別對線段AECE,DE的長度之間的關(guān)系進(jìn)行了探究.下面是小紅的探究過程,請將它補充完整:

1)對于點E在直徑AB上的不同位置,畫圖,測量,得到了線段AECE,DE的長度的幾組值,如下表:

位置1

位置2

位置3

位置4

位置5

位置6

位置7

CE/cm

2.50

2.28

2.50

3.00

3.72

4.64

5.44

DE/cm

2.98

2.29

1.69

1.69

2.18

3.05

3.84

AE/cm

0.00

0.87

2.11

3.02

4.00

5.12

6.00

AECE,DE的長度這三個量中,確定   長度是自變量,自變量的取值范圍是   ;

2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定函數(shù)的圖象;

3)結(jié)合函數(shù)的圖象,解決問題:當(dāng)ACE為等腰三角形時,AE的長度約為   cm(結(jié)果精確到0.01).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜加工公司先后兩批次收購洋蔥共100噸.第一批洋蔥價格為4000元/噸;因洋蔥大量上市,第二批價格跌至1000元/噸.這兩批洋蔥共用去16萬元.

(1)求兩批次購進(jìn)洋蔥各多少噸;

(2)公司收購后對洋蔥進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤400元,精加工每噸利潤1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應(yīng)為多少噸?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案