【題目】小宇想測量位于池塘兩端的A、B兩點的距離.他沿著與直線AB平行的道路EF行走,當(dāng)行走到點C處,測得∠ACF=45°,再向前行走100米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為60米,求A、B兩點的距離.

【答案】解:作AM⊥EF于點M,作BN⊥EF于點N,如右圖所示, 由題意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,
∴CM= 米,
DN= 米,
∴AB=CD+DN﹣CM=100+20 ﹣60=(40+20 )米,
即A、B兩點的距離是(40+20 )米.

【解析】根據(jù)題意作出合適的輔助線,畫出相應(yīng)的圖形,可以分別求得CM、DN的長,由于AB=CN﹣CM,從而可以求得AB的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,且BD為直徑,∠ACB=45°,過A點的AC的垂線交BC的延長線于點E.


(1)求證:BE=CD;
(2)如果AD= ,求圖中陰影的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD、線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元)、銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請解釋圖中點D的橫坐標(biāo)、縱坐標(biāo)的實際意義;
(2)求線段AB所表示的y1與x之間的函數(shù)表達式;
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,AB=BC=2,將△ABC繞點C逆時針旋轉(zhuǎn)60°,得到△MNC,連接BM,那么BM的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠AOB內(nèi)任意一點,OP=5cm,點M和點N分別是射線OA和射線OB上的動點,△PMN周長的最小值是5cm,則∠AOB的度數(shù)是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是⊙O外一點,PA切⊙O于點A,AB是⊙O的直徑,連接OP,過點B作BC∥OP交⊙O于點C,連接AC交OP于點D.

(1)求證:PC是⊙O的切線;
(2)若PD=,AC=8,求圖中陰影部分的面積;
(3)在(2)的條件下,若點E是的中點,連接CE,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點D是邊AB上一點,點E是邊AC上一點,且DE∥BC,∠B=40°,∠AED=60°,則∠A的度數(shù)是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC,D是邊BC的中點,過D作DE∥AB于E,連接BE交AD于D1;過D1作D1E1∥AB于E1 , 連接BE1交AD于D2;過D2作D2E2∥AB于E2 , …,如此繼續(xù),若記SBDE為S1 , 記 為S2 , 記 為S3…,若SABC面積為Scm,則Sn=cm(用含n與S的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊答案